論文の概要: Generative Adversarial Trainer: Defense to Adversarial Perturbations
with GAN
- arxiv url: http://arxiv.org/abs/1705.03387v3
- Date: Tue, 4 Jul 2023 06:49:26 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-07 19:03:29.731003
- Title: Generative Adversarial Trainer: Defense to Adversarial Perturbations
with GAN
- Title(参考訳): generative adversarial trainer: ganによる敵対的摂動に対する防御
- Authors: Hyeungill Lee, Sungyeob Han, Jungwoo Lee
- Abstract要約: 本稿では, 生成的対角ネットワークを用いて, ニューラルネットワークを敵の例に頑健にするための新しい手法を提案する。
ジェネレータネットワークは、各画像の勾配を用いて分類器ネットワークを騙し易くする対向摂動を生成する。
我々の対戦型トレーニングフレームワークは、Dropoutのような他の正規化手法よりも効率よくオーバーフィッティングを減らし、性能を向上します。
- 参考スコア(独自算出の注目度): 13.561553183983774
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We propose a novel technique to make neural network robust to adversarial
examples using a generative adversarial network. We alternately train both
classifier and generator networks. The generator network generates an
adversarial perturbation that can easily fool the classifier network by using a
gradient of each image. Simultaneously, the classifier network is trained to
classify correctly both original and adversarial images generated by the
generator. These procedures help the classifier network to become more robust
to adversarial perturbations. Furthermore, our adversarial training framework
efficiently reduces overfitting and outperforms other regularization methods
such as Dropout. We applied our method to supervised learning for CIFAR
datasets, and experimantal results show that our method significantly lowers
the generalization error of the network. To the best of our knowledge, this is
the first method which uses GAN to improve supervised learning.
- Abstract(参考訳): 本稿では,生成型adversarial networkを用いて,ニューラルネットワークを敵例に頑健にする新しい手法を提案する。
我々は分類器と生成器のネットワークを交互に訓練する。
生成ネットワークは、各画像の勾配を用いて分類器ネットワークを容易に騙すことができる逆摂動を生成する。
同時に、分類器ネットワークは、生成者が生成した原画像と逆画像の両方を正しく分類するように訓練される。
これらの手順は、分類器ネットワークが敵の摂動に対してより堅牢になるのに役立つ。
さらに,本学習フレームワークは,オーバーフィッティングを効率的に低減し,ドロップアウトなどの他の正規化手法を上回る。
提案手法をCIFARデータセットの教師あり学習に適用し,実験結果からネットワークの一般化誤差を著しく低減することを示した。
我々の知る限りでは、教師あり学習を改善するために GAN を用いる最初の方法である。
関連論文リスト
- Distributed Adversarial Training to Robustify Deep Neural Networks at
Scale [100.19539096465101]
現在のディープニューラルネットワーク(DNN)は、入力に対する敵の摂動が分類を変更したり操作したりする敵の攻撃に対して脆弱である。
このような攻撃を防御するために、敵の訓練(AT)として知られる効果的なアプローチが、堅牢な訓練を緩和するために示されている。
複数のマシンにまたがって実装された大規模バッチ対逆トレーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2022-06-13T15:39:43Z) - Being Friends Instead of Adversaries: Deep Networks Learn from Data
Simplified by Other Networks [23.886422706697882]
フレンドリートレーニング(Friendly Training)は、自動的に推定される摂動を追加することで入力データを変更するものである。
本稿では,ニューラルネットワークの有効性に触発されて,このアイデアを再考し,拡張する。
本稿では,入力データの変更に責任を負う補助的な多層ネットワークを提案する。
論文 参考訳(メタデータ) (2021-12-18T16:59:35Z) - Self-Ensembling GAN for Cross-Domain Semantic Segmentation [107.27377745720243]
本稿では,セマンティックセグメンテーションのためのクロスドメインデータを利用した自己理解型生成逆数ネットワーク(SE-GAN)を提案する。
SE-GANでは、教師ネットワークと学生ネットワークは、意味分節マップを生成するための自己組織化モデルを構成する。
その単純さにもかかわらず、SE-GANは敵の訓練性能を大幅に向上させ、モデルの安定性を高めることができる。
論文 参考訳(メタデータ) (2021-12-15T09:50:25Z) - Defensive Tensorization [113.96183766922393]
本稿では,ネットワークの遅延高次分解を利用した対角防御手法であるテンソル防御手法を提案する。
我々は,標準画像分類ベンチマークにおけるアプローチの有効性を実証的に実証した。
我々は,音声タスクとバイナリネットワークを考慮し,ドメイン間のアプローチと低精度アーキテクチャの汎用性を検証した。
論文 参考訳(メタデータ) (2021-10-26T17:00:16Z) - Improving Transformation-based Defenses against Adversarial Examples
with First-order Perturbations [16.346349209014182]
研究によると、ニューラルネットワークは敵の攻撃を受けやすい。
これにより、ニューラルネットワークベースのインテリジェントシステムに対する潜在的な脅威が露呈する。
本稿では, 対向性強靭性を改善するために, 対向性摂動に対処する手法を提案する。
論文 参考訳(メタデータ) (2021-03-08T06:27:24Z) - Regularized Generative Adversarial Network [0.0]
本稿では,トレーニングセットの確率分布とは異なる確率分布からサンプルを生成するフレームワークを提案する。
我々はこの新モデルを正規化生成対向ネットワーク(RegGAN)と呼ぶ。
論文 参考訳(メタデータ) (2021-02-09T01:13:36Z) - Local Critic Training for Model-Parallel Learning of Deep Neural
Networks [94.69202357137452]
そこで我々は,局所的批判訓練と呼ばれる新しいモデル並列学習手法を提案する。
提案手法は,畳み込みニューラルネットワーク(CNN)とリカレントニューラルネットワーク(RNN)の両方において,階層群の更新プロセスの分離に成功したことを示す。
また,提案手法によりトレーニングされたネットワークを構造最適化に利用できることを示す。
論文 参考訳(メタデータ) (2021-02-03T09:30:45Z) - The Hidden Tasks of Generative Adversarial Networks: An Alternative
Perspective on GAN Training [1.964574177805823]
我々は、GAN(Generative Adversarial Network)のトレーニングに関する代替的視点を示す。
GANジェネレータのトレーニングステップが2つの暗黙のサブプロブレムに分解されることを示す。
本研究は,本研究の主な理論的成果を実験的に検証し,代替トレーニング手法の意義について考察する。
論文 参考訳(メタデータ) (2021-01-28T08:17:29Z) - REGroup: Rank-aggregating Ensemble of Generative Classifiers for Robust
Predictions [6.0162772063289784]
敵の訓練やランダムな入力変換を採用する防衛戦略は、合理的なパフォーマンスを達成するために、モデルの再訓練や微調整を必要とするのが普通である。
中間層の神経応答を統計的に特徴付けることにより, 生成型分類器を学習し, トレーニングサンプルをクリーンにすることができる。
提案手法は, クリーントレーニングデータのサブセットと事前学習モデルを用いており, ネットワークアーキテクチャや敵攻撃生成手法に非依存である。
論文 参考訳(メタデータ) (2020-06-18T17:07:19Z) - Feature Purification: How Adversarial Training Performs Robust Deep
Learning [66.05472746340142]
ニューラルネットワークのトレーニングプロセス中に隠れた重みに、特定の小さな密度の混合物が蓄積されることが、敵の例の存在の原因の1つであることを示す。
この原理を説明するために、CIFAR-10データセットの両実験と、ある自然な分類タスクに対して、ランダムな勾配勾配勾配を用いた2層ニューラルネットワークをトレーニングすることを証明する理論的結果を示す。
論文 参考訳(メタデータ) (2020-05-20T16:56:08Z) - Towards Achieving Adversarial Robustness by Enforcing Feature
Consistency Across Bit Planes [51.31334977346847]
我々は、高ビット平面の情報に基づいて粗い印象を形成するためにネットワークを訓練し、低ビット平面を用いて予測を洗練させる。
異なる量子化画像間で学習した表現に一貫性を付与することにより、ネットワークの対角的ロバスト性が大幅に向上することを示した。
論文 参考訳(メタデータ) (2020-04-01T09:31:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。