論文の概要: A Comprehensive Low and High-level Feature Analysis for Early Rumor Detection on Twitter
- arxiv url: http://arxiv.org/abs/1711.00726v3
- Date: Tue, 9 Apr 2024 12:24:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-10 21:05:06.863919
- Title: A Comprehensive Low and High-level Feature Analysis for Early Rumor Detection on Twitter
- Title(参考訳): Twitterにおける地震早期検出のための包括的低レベル・高レベル特徴分析
- Authors: Tu Nguyen,
- Abstract要約: ニューラルモデルを使用して、噂の始めに、個々の噂に関連するツイートの隠された表現を学習します。
実験の結果,結果の信号は時間とともに分類性能を向上させることがわかった。
我々は,48時間帯における広範囲にわたる高影響噂機能について広範な研究を行っている。
- 参考スコア(独自算出の注目度): 0.5031093893882576
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent work have done a good job in modeling rumors and detecting them over microblog streams. However, the performance of their automatic approaches are not relatively high when looking early in the diffusion. A first intuition is that, at early stage, most of the aggregated rumor features (e.g., propagation features) are not mature and distinctive enough. The objective of rumor debunking in microblogs, however, are to detect these misinformation as early as possible. In this work, we leverage neural models in learning the hidden representations of individual rumor-related tweets at the very beginning of a rumor. Our extensive experiments show that the resulting signal improves our classification performance over time, significantly within the first 10 hours. To deepen the understanding of these low and high-level features in contributing to the model performance over time, we conduct an extensive study on a wide range of high impact rumor features for the 48 hours range. The end model that engages these features are shown to be competitive, reaches over 90% accuracy and out-performs strong baselines in our carefully cured dataset.
- Abstract(参考訳): 最近の研究は、噂をモデル化し、マイクロブログストリーム上でそれらを検出するのに役立っている。
しかし, 拡散の早い段階では, 自動アプローチの性能は比較的高くない。
第一の直感は、初期の段階では、集約された噂のほとんどの特徴(例えば、伝播の特徴)は十分に成熟してはいない、というものである。
しかし、マイクロブログの噂は、これらの誤報をできるだけ早く検出することを目的としている。
本研究では,まず,個々の噂関連ツイートの隠れ表現を学習するために,ニューラルモデルを活用する。
我々の広範な実験により、結果の信号は時間の経過とともに分類性能を向上し、最初の10時間で顕著に向上することが示された。
モデル性能に時間とともに寄与するこれらの低レベル・高レベルな特徴の理解を深めるため,48時間帯の広範囲にわたるハイインパクトな噂機能について広範な研究を行った。
これらの機能に関わるエンドモデルは、競争力があり、90%以上の精度に達し、慎重にキュレートされたデータセットで強いベースラインを上回ります。
関連論文リスト
- Not All Diffusion Model Activations Have Been Evaluated as Discriminative Features [115.33889811527533]
拡散モデルは当初、画像生成のために設計されている。
近年の研究では、バックボーンの内部シグナルはアクティベーションと呼ばれ、様々な識別タスクの高密度な特徴として機能することが示されている。
論文 参考訳(メタデータ) (2024-10-04T16:05:14Z) - Learning with Noisy Foundation Models [95.50968225050012]
本論文は、事前学習データセットにおけるノイズの性質を包括的に理解し分析する最初の研究である。
雑音の悪影響を緩和し、一般化を改善するため、特徴空間に適応するチューニング法(NMTune)を提案する。
論文 参考訳(メタデータ) (2024-03-11T16:22:41Z) - Understanding and Mitigating the Label Noise in Pre-training on
Downstream Tasks [91.15120211190519]
本稿では、事前学習データセットにおけるノイズの性質を理解し、下流タスクへの影響を軽減することを目的とする。
雑音の悪影響を軽減するために特徴空間に適応する軽量ブラックボックスチューニング法(NMTune)を提案する。
論文 参考訳(メタデータ) (2023-09-29T06:18:15Z) - Examining the Limitations of Computational Rumor Detection Models Trained on Static Datasets [30.315424983805087]
本稿では,コンテンツとコンテキストベースモデルのパフォーマンスギャップを詳細に評価する。
我々の経験的結果は、コンテキストベースのモデルは、まだ噂のソース投稿から得られた情報に過度に依存していることを示している。
実験結果に基づき,静的データセットにおける時間的概念ドリフトの影響を最小限に抑えるための実践的な提案を行った。
論文 参考訳(メタデータ) (2023-09-20T18:27:19Z) - Rumor Detection with Self-supervised Learning on Texts and Social Graph [101.94546286960642]
異種情報ソース上での自己教師型学習を対照的に提案し,それらの関係を明らかにするとともに,噂をよりよく特徴付ける。
我々はこの枠組みをSRD(Self-supervised Rumor Detection)と呼ぶ。
3つの実世界のデータセットに対する大規模な実験により、ソーシャルメディア上での噂の自動検出におけるSRDの有効性が検証された。
論文 参考訳(メタデータ) (2022-04-19T12:10:03Z) - Detect Rumors in Microblog Posts for Low-Resource Domains via
Adversarial Contrastive Learning [8.013665071332388]
本稿では,噂データから得られた特徴を低リソースデータに適応させることにより,噂を検出するための逆相反学習フレームワークを提案する。
本フレームワークは最先端の手法よりも優れた性能を実現し,早期に噂を検出する能力に優れる。
論文 参考訳(メタデータ) (2022-04-18T03:10:34Z) - Predicting MOOCs Dropout Using Only Two Easily Obtainable Features from
the First Week's Activities [56.1344233010643]
いくつかの特徴は、学習者の誘惑や興味の欠如に寄与すると考えられており、そのことが解脱や総減退につながる可能性がある。
この研究は、いくつかの機械学習アプローチを比較して、最初の1週間から早期のドロップアウトを予測することを目的としている。
論文 参考訳(メタデータ) (2020-08-12T10:44:49Z) - RP-DNN: A Tweet level propagation context based deep neural networks for
early rumor detection in Social Media [3.253418861583211]
ソーシャルメディアプラットフォーム上での早期の噂検出(ERD)は、限定的で不完全でノイズの多い情報が利用可能である場合、非常に困難である。
本稿では,文字ベース双方向言語モデルとLong Short-Term Memory(LSTM)ネットワークを組み合わせた,新しいハイブリッドニューラルネットワークアーキテクチャを提案する。
当社のモデルでは,12件以上のイベントと2,967件の噂を網羅する大規模拡張データ上での未知の噂を検出するために,最先端(SoA)性能を実現している。
論文 参考訳(メタデータ) (2020-02-28T12:44:34Z) - An Information Diffusion Approach to Rumor Propagation and
Identification on Twitter [0.0]
われわれは,Twitter上での顕微鏡レベルの誤情報拡散のダイナミクスについて検討した。
われわれの調査によると、噂のカスケードはより深く流れ、その噂はニュースとして隠され、恐怖を喚起するメッセージは他のメッセージよりも急速に拡散する。
論文 参考訳(メタデータ) (2020-02-24T20:04:54Z) - Rumor Detection on Social Media with Bi-Directional Graph Convolutional
Networks [89.13567439679709]
本稿では,二方向グラフ畳み込みネットワーク (Bi-Directional Graph Convolutional Networks, Bi-GCN) と呼ばれる新しい双方向グラフモデルを提案する。
これは、噂拡散のパターンを学習するために、噂拡散のトップダウン指向グラフを持つGCNと、噂拡散の反対指向グラフを持つGCNを活用して、噂拡散の構造を捉える。
論文 参考訳(メタデータ) (2020-01-17T15:12:08Z) - On Early-stage Debunking Rumors on Twitter: Leveraging the Wisdom of Weak Learners [4.325479143880198]
本稿では、畳み込みニューラルネットワークを用いて、個々の噂関連ツイートの隠れ表現を学習する早期噂検出手法を提案する。
われわれの実験は、噂の最初の数時間で、明確な分類性能が向上したことを示している。
論文 参考訳(メタデータ) (2017-09-13T16:15:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。