論文の概要: A Generic Model for Swarm Intelligence and Its Validations
- arxiv url: http://arxiv.org/abs/1712.04182v3
- Date: Fri, 17 Jan 2025 06:56:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-21 15:53:17.728923
- Title: A Generic Model for Swarm Intelligence and Its Validations
- Title(参考訳): 群知能のジェネリックモデルとその検証
- Authors: Wenpin Jiao,
- Abstract要約: 群知能の矛盾中心モデルを提案する。
このモデルは、群知能の出現は個人の内的矛盾の解消に根ざしていると仮定している。
5つのSwarmインテリジェンスシステムは、その幅広い適用性を説明するために研究されている。
- 参考スコア(独自算出の注目度): 0.456877715768796
- License:
- Abstract: The modeling of emergent swarm intelligence constitutes a major challenge and it has been tackled in a number of different ways. However, existing approaches fail to capture the nature of swarm intelligence and they are either too abstract for practical application or not generic enough to describe the various types of emergence phenomena. In this paper, a contradiction-centric model for swarm intelligence is proposed, in which individu-als determine their behaviors based on their internal contradictions whilst they associate and interact to update their contradictions. The model hypothesizes that 1) the emergence of swarm intelligence is rooted in the de-velopment of individuals' internal contradictions and the interactions taking place between individuals and the environment, and 2) swarm intelligence is essentially a combinative reflection of the configurations of individuals' internal contradictions and the distributions of these contradictions across individuals. The model is formally described and five swarm intelligence systems are studied to illustrate its broad applicability. The studies confirm the generic character of the model and its effectiveness for describing the emergence of various kinds of swarm intelligence; and they also demonstrate that the model is straightforward to apply, without the need for complicated computations.
- Abstract(参考訳): 創発的な群知能のモデリングは大きな課題であり、様々な方法で取り組まれてきた。
しかし、既存のアプローチは群知能の性質を捉えず、実用には抽象的すぎるか、様々な種類の出現現象を記述するのに十分一般的でないかのいずれかである。
本稿では,群知能の矛盾中心モデルを提案する。このモデルでは,個人が相互に関連付け,相互作用しながら内部の矛盾に基づいて行動を決定する。
そのモデルはそれを仮定する
1) 集団知能の出現は、個人の内部矛盾と個人と環境の間の相互作用の非発展に根ざしている。
2)群知能は,個人の内部矛盾と個人間の矛盾の分布を結合的に反映したものである。
このモデルは公式に説明され、5つの群知能システムでその適用可能性について研究されている。
本研究は, モデルの汎用的特徴と, 各種の群知能の出現を説明するための有効性を確認するとともに, 複雑な計算を必要とせず, 適用が容易であることを実証した。
関連論文リスト
- Visual-O1: Understanding Ambiguous Instructions via Multi-modal Multi-turn Chain-of-thoughts Reasoning [53.45295657891099]
本稿では,マルチモーダルなマルチターン・チェーン・オブ・シークレット・推論・フレームワークであるVisual-O1を提案する。
人間のマルチモーダルなマルチターン推論をシミュレートし、高度にインテリジェントなモデルに即時体験を提供する。
私たちの研究は、不確実性と曖昧さのある現実のシナリオにおいて、人工知能が人間のように機能する可能性を強調します。
論文 参考訳(メタデータ) (2024-10-04T11:18:41Z) - Position: Stop Making Unscientific AGI Performance Claims [6.343515088115924]
人工知能(AI)分野の発展は、人工知能(AGI)の「スパーク」を観察するための「完璧な嵐」を生み出した。
我々は、モデルの潜在空間における有意義なパターンの発見は、AGIを支持する証拠とは見なされないことを議論し、実証的に実証した。
我々は、モデル表現と興味のある変数の間の相関が、モデルが根底にある「真実」の関係について理解していることから「原因」であるとの誤解に対して、AIの方法論的設定と一般的な公開イメージの両方が理想的であると結論付けている。
論文 参考訳(メタデータ) (2024-02-06T12:42:21Z) - Designing Ecosystems of Intelligence from First Principles [34.429740648284685]
このホワイトペーパーは、今後10年間(そしてそれ以上)、人工知能の分野における研究と発展のビジョンを概説している。
そのデノウメントは自然と合成の感覚形成のサイバー物理的なエコシステムであり、人間は統合的な参加者である。
このビジョンは、知性の物理学として読むことができる適応的行動の定式化である能動推論に基づいている。
論文 参考訳(メタデータ) (2022-12-02T18:24:06Z) - Rethinking Trajectory Prediction via "Team Game" [118.59480535826094]
本稿では,対話型グループコンセンサスの概念を明示的に導入した,マルチエージェント軌道予測の新しい定式化について述べる。
チームスポーツと歩行者の2つのマルチエージェント設定において,提案手法は既存手法と比較して常に優れた性能を達成している。
論文 参考訳(メタデータ) (2022-10-17T07:16:44Z) - Multi-Agent Imitation Learning with Copulas [102.27052968901894]
マルチエージェント模倣学習は、観察と行動のマッピングを学習することで、デモからタスクを実行するために複数のエージェントを訓練することを目的としている。
本稿では,確率変数間の依存を捉える強力な統計ツールである copula を用いて,マルチエージェントシステムにおける相関関係と協調関係を明示的にモデル化する。
提案モデルでは,各エージェントの局所的行動パターンと,エージェント間の依存構造のみをフルにキャプチャするコプラ関数を別々に学習することができる。
論文 参考訳(メタデータ) (2021-07-10T03:49:41Z) - A Bayesian Account of Measures of Interpretability in Human-AI
Interaction [34.99424576619341]
解釈可能なエージェントの振る舞いを設計するための既存のアプローチは、分離時の解釈可能性の異なる尺度を考える。
これらすべての振る舞いを有意義にモデル化できる改訂モデルを提案する。
この統合モデルによる興味深い結果を強調し、ユーザスタディの結果を動機付けます。
論文 参考訳(メタデータ) (2020-11-22T03:28:28Z) - Mechanisms for Handling Nested Dependencies in Neural-Network Language
Models and Humans [75.15855405318855]
我々は,「深層学習」手法で訓練された現代人工ニューラルネットワークが,人間の文処理の中心的な側面を模倣するかどうかを検討した。
ネットワークは、大きなコーパスで次の単語を予測するためにのみ訓練されたが、分析の結果、局所的および長距離の構文合意をうまく処理する特別なユニットが出現した。
我々は,複数の名詞の単数/複数状態における体系的な変化を伴う文中の数一致の違反を人間が検出する行動実験において,モデルの予測を検証した。
論文 参考訳(メタデータ) (2020-06-19T12:00:05Z) - Machine Common Sense [77.34726150561087]
機械の常識は、人工知能(AI)において広範で潜在的に無拘束な問題のままである
本稿では、対人インタラクションのようなドメインに焦点を当てたコモンセンス推論のモデル化の側面について論じる。
論文 参考訳(メタデータ) (2020-06-15T13:59:47Z) - Fundamental Tradeoffs between Invariance and Sensitivity to Adversarial
Perturbations [65.05561023880351]
敵の例は誤分類を引き起こすために作られた悪意のある入力である。
本稿では, 相補的障害モード, 不変性に基づく逆数例について検討する。
感度に基づく攻撃に対する防御は、不変性に基づく攻撃に対するモデルの精度を積極的に損なうことを示す。
論文 参考訳(メタデータ) (2020-02-11T18:50:23Z) - Variational Autoencoders for Opponent Modeling in Multi-Agent Systems [9.405879323049659]
マルチエージェントシステムは、共有環境における複数のエージェントの相互作用から生じる複雑な振る舞いを示す。
本研究は,マルチエージェントシステムにおけるエージェントの制御に関心を持ち,ポリシーを定めているエージェントとのインタラクションをうまく学習する。
他のエージェント(反対者)の振る舞いをモデル化することは、システム内のエージェントの相互作用を理解するのに不可欠である。
論文 参考訳(メタデータ) (2020-01-29T13:38:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。