Fisher-Schultz Lecture: Generic Machine Learning Inference on
Heterogenous Treatment Effects in Randomized Experiments, with an Application
to Immunization in India
- URL: http://arxiv.org/abs/1712.04802v8
- Date: Mon, 23 Oct 2023 20:38:14 GMT
- Title: Fisher-Schultz Lecture: Generic Machine Learning Inference on
Heterogenous Treatment Effects in Randomized Experiments, with an Application
to Immunization in India
- Authors: Victor Chernozhukov, Mert Demirer, Esther Duflo, and Iv\'an
Fern\'andez-Val
- Abstract summary: We propose strategies to estimate and make inference on key features of heterogeneous effects in randomized experiments.
Key features include best linear predictors of the effects using machine learning proxies, average effects sorted by impact groups, and average characteristics of most and least impacted units.
- Score: 3.3449509626538543
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose strategies to estimate and make inference on key features of
heterogeneous effects in randomized experiments. These key features include
best linear predictors of the effects using machine learning proxies, average
effects sorted by impact groups, and average characteristics of most and least
impacted units. The approach is valid in high dimensional settings, where the
effects are proxied (but not necessarily consistently estimated) by predictive
and causal machine learning methods. We post-process these proxies into
estimates of the key features. Our approach is generic, it can be used in
conjunction with penalized methods, neural networks, random forests, boosted
trees, and ensemble methods, both predictive and causal. Estimation and
inference are based on repeated data splitting to avoid overfitting and achieve
validity. We use quantile aggregation of the results across many potential
splits, in particular taking medians of p-values and medians and other
quantiles of confidence intervals. We show that quantile aggregation lowers
estimation risks over a single split procedure, and establish its principal
inferential properties. Finally, our analysis reveals ways to build provably
better machine learning proxies through causal learning: we can use the
objective functions that we develop to construct the best linear predictors of
the effects, to obtain better machine learning proxies in the initial step. We
illustrate the use of both inferential tools and causal learners with a
randomized field experiment that evaluates a combination of nudges to stimulate
demand for immunization in India.
Related papers
- Estimating Distributional Treatment Effects in Randomized Experiments: Machine Learning for Variance Reduction [6.909352249236339]
We propose a novel regression adjustment method designed for estimating distributional treatment effect parameters in randomized experiments.
Our approach incorporates pre-treatment co-treatments into a distributional regression framework, utilizing machine learning techniques to improve the precision of distributional treatment effect estimators.
arXiv Detail & Related papers (2024-07-22T20:28:29Z) - Structured Radial Basis Function Network: Modelling Diversity for
Multiple Hypotheses Prediction [51.82628081279621]
Multi-modal regression is important in forecasting nonstationary processes or with a complex mixture of distributions.
A Structured Radial Basis Function Network is presented as an ensemble of multiple hypotheses predictors for regression problems.
It is proved that this structured model can efficiently interpolate this tessellation and approximate the multiple hypotheses target distribution.
arXiv Detail & Related papers (2023-09-02T01:27:53Z) - Doubly Robust Estimation of Direct and Indirect Quantile Treatment
Effects with Machine Learning [0.0]
We suggest a machine learning estimator of direct and indirect quantile treatment effects under a selection-on-observables assumption.
The proposed method is based on the efficient score functions of the cumulative distribution functions of potential outcomes.
We also propose a multiplier bootstrap for statistical inference and show the validity of the multiplier.
arXiv Detail & Related papers (2023-07-03T14:27:15Z) - Identification and multiply robust estimation in causal mediation analysis across principal strata [7.801213477601286]
We consider assessing causal mediation in the presence of a post-treatment event.
We derive the efficient influence function for each mediation estimand, which motivates a set of multiply robust estimators for inference.
arXiv Detail & Related papers (2023-04-20T00:39:20Z) - Matched Machine Learning: A Generalized Framework for Treatment Effect
Inference With Learned Metrics [87.05961347040237]
We introduce Matched Machine Learning, a framework that combines the flexibility of machine learning black boxes with the interpretability of matching.
Our framework uses machine learning to learn an optimal metric for matching units and estimating outcomes.
We show empirically that instances of Matched Machine Learning perform on par with black-box machine learning methods and better than existing matching methods for similar problems.
arXiv Detail & Related papers (2023-04-03T19:32:30Z) - Prediction-Powered Inference [68.97619568620709]
Prediction-powered inference is a framework for performing valid statistical inference when an experimental dataset is supplemented with predictions from a machine-learning system.
The framework yields simple algorithms for computing provably valid confidence intervals for quantities such as means, quantiles, and linear and logistic regression coefficients.
Prediction-powered inference could enable researchers to draw valid and more data-efficient conclusions using machine learning.
arXiv Detail & Related papers (2023-01-23T18:59:28Z) - Treatment Effect Estimation with Observational Network Data using
Machine Learning [0.0]
Causal inference methods for treatment effect estimation usually assume independent units.
We develop augmented inverse probability (AIPW) for estimation and inference of the direct effect of the treatment with observational data from a single (social) network with spillover effects.
arXiv Detail & Related papers (2022-06-29T12:52:41Z) - Double Robust Representation Learning for Counterfactual Prediction [68.78210173955001]
We propose a novel scalable method to learn double-robust representations for counterfactual predictions.
We make robust and efficient counterfactual predictions for both individual and average treatment effects.
The algorithm shows competitive performance with the state-of-the-art on real world and synthetic data.
arXiv Detail & Related papers (2020-10-15T16:39:26Z) - Machine learning for causal inference: on the use of cross-fit
estimators [77.34726150561087]
Doubly-robust cross-fit estimators have been proposed to yield better statistical properties.
We conducted a simulation study to assess the performance of several estimators for the average causal effect (ACE)
When used with machine learning, the doubly-robust cross-fit estimators substantially outperformed all of the other estimators in terms of bias, variance, and confidence interval coverage.
arXiv Detail & Related papers (2020-04-21T23:09:55Z) - Almost-Matching-Exactly for Treatment Effect Estimation under Network
Interference [73.23326654892963]
We propose a matching method that recovers direct treatment effects from randomized experiments where units are connected in an observed network.
Our method matches units almost exactly on counts of unique subgraphs within their neighborhood graphs.
arXiv Detail & Related papers (2020-03-02T15:21:20Z) - Nonparametric inference for interventional effects with multiple
mediators [0.0]
We provide theory that allows for more flexible, possibly machine learning-based, estimation techniques.
We demonstrate multiple robustness properties of the proposed estimators.
Our work thus provides a means of leveraging modern statistical learning techniques in estimation of interventional mediation effects.
arXiv Detail & Related papers (2020-01-16T19:05:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.