Almost-Matching-Exactly for Treatment Effect Estimation under Network
Interference
- URL: http://arxiv.org/abs/2003.00964v1
- Date: Mon, 2 Mar 2020 15:21:20 GMT
- Title: Almost-Matching-Exactly for Treatment Effect Estimation under Network
Interference
- Authors: M. Usaid Awan, Marco Morucci, Vittorio Orlandi, Sudeepa Roy, Cynthia
Rudin, Alexander Volfovsky
- Abstract summary: We propose a matching method that recovers direct treatment effects from randomized experiments where units are connected in an observed network.
Our method matches units almost exactly on counts of unique subgraphs within their neighborhood graphs.
- Score: 73.23326654892963
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: We propose a matching method that recovers direct treatment effects from
randomized experiments where units are connected in an observed network, and
units that share edges can potentially influence each others' outcomes.
Traditional treatment effect estimators for randomized experiments are biased
and error prone in this setting. Our method matches units almost exactly on
counts of unique subgraphs within their neighborhood graphs. The matches that
we construct are interpretable and high-quality. Our method can be extended
easily to accommodate additional unit-level covariate information. We show
empirically that our method performs better than other existing methodologies
for this problem, while producing meaningful, interpretable results.
Related papers
- Collaborative Heterogeneous Causal Inference Beyond Meta-analysis [68.4474531911361]
We propose a collaborative inverse propensity score estimator for causal inference with heterogeneous data.
Our method shows significant improvements over the methods based on meta-analysis when heterogeneity increases.
arXiv Detail & Related papers (2024-04-24T09:04:36Z) - CKD: Contrastive Knowledge Distillation from A Sample-wise Perspective [48.99488315273868]
We present a contrastive knowledge distillation approach, which can be formulated as a sample-wise alignment problem with intra- and inter-sample constraints.
Our method minimizes logit differences within the same sample by considering their numerical values.
We conduct comprehensive experiments on three datasets including CIFAR-100, ImageNet-1K, and MS COCO.
arXiv Detail & Related papers (2024-04-22T11:52:40Z) - Estimation of individual causal effects in network setup for multiple
treatments [4.53340898566495]
We study the problem of estimation of Individual Treatment Effects (ITE) in the context of multiple treatments and observational data.
We employ Graph Convolutional Networks (GCN) to learn a shared representation of the confounders.
Our approach utilizes separate neural networks to infer potential outcomes for each treatment.
arXiv Detail & Related papers (2023-12-18T06:07:45Z) - Causal Message Passing for Experiments with Unknown and General Network Interference [5.294604210205507]
We introduce a new framework to accommodate complex and unknown network interference.
Our framework, termed causal message-passing, is grounded in high-dimensional approximate message passing methodology.
We demonstrate the effectiveness of this approach across five numerical scenarios.
arXiv Detail & Related papers (2023-11-14T17:31:50Z) - Implicit Variational Inference for High-Dimensional Posteriors [7.924706533725115]
In variational inference, the benefits of Bayesian models rely on accurately capturing the true posterior distribution.
We propose using neural samplers that specify implicit distributions, which are well-suited for approximating complex multimodal and correlated posteriors.
Our approach introduces novel bounds for approximate inference using implicit distributions by locally linearising the neural sampler.
arXiv Detail & Related papers (2023-10-10T14:06:56Z) - Doubly Robust Estimation of Direct and Indirect Quantile Treatment
Effects with Machine Learning [0.0]
We suggest a machine learning estimator of direct and indirect quantile treatment effects under a selection-on-observables assumption.
The proposed method is based on the efficient score functions of the cumulative distribution functions of potential outcomes.
We also propose a multiplier bootstrap for statistical inference and show the validity of the multiplier.
arXiv Detail & Related papers (2023-07-03T14:27:15Z) - Scalable Personalised Item Ranking through Parametric Density Estimation [53.44830012414444]
Learning from implicit feedback is challenging because of the difficult nature of the one-class problem.
Most conventional methods use a pairwise ranking approach and negative samplers to cope with the one-class problem.
We propose a learning-to-rank approach, which achieves convergence speed comparable to the pointwise counterpart.
arXiv Detail & Related papers (2021-05-11T03:38:16Z) - Deconfounding Scores: Feature Representations for Causal Effect
Estimation with Weak Overlap [140.98628848491146]
We introduce deconfounding scores, which induce better overlap without biasing the target of estimation.
We show that deconfounding scores satisfy a zero-covariance condition that is identifiable in observed data.
In particular, we show that this technique could be an attractive alternative to standard regularizations.
arXiv Detail & Related papers (2021-04-12T18:50:11Z) - DANCE: Enhancing saliency maps using decoys [35.46266461621123]
We propose a framework that improves the robustness of saliency methods by following a two-step procedure.
First, we introduce a perturbation mechanism that subtly varies the input sample without changing its intermediate representations.
Second, we compute saliency maps for perturbed samples and propose a new method to aggregate saliency maps.
arXiv Detail & Related papers (2020-02-03T01:21:48Z) - Generalization Bounds and Representation Learning for Estimation of
Potential Outcomes and Causal Effects [61.03579766573421]
We study estimation of individual-level causal effects, such as a single patient's response to alternative medication.
We devise representation learning algorithms that minimize our bound, by regularizing the representation's induced treatment group distance.
We extend these algorithms to simultaneously learn a weighted representation to further reduce treatment group distances.
arXiv Detail & Related papers (2020-01-21T10:16:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.