論文の概要: Homology-Preserving Multi-Scale Graph Skeletonization Using Mapper on
Graphs
- arxiv url: http://arxiv.org/abs/1804.11242v5
- Date: Tue, 19 Sep 2023 17:44:44 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-20 21:12:22.204577
- Title: Homology-Preserving Multi-Scale Graph Skeletonization Using Mapper on
Graphs
- Title(参考訳): Mapper on Graphs を用いたホモロジー保存マルチスケールグラフスケトン化
- Authors: Paul Rosen, Mustafa Hajij, Bei Wang
- Abstract要約: 本稿では、トポロジカルデータ解析の一般的なツールであるmapper構築をグラフ視覚化に適用することを提案する。
我々は,グラフのホモロジー保存骨格を生成するモグ (mog) と呼ばれる,重み付けされた非方向グラフを対象とするマッパー構成のバリエーションを開発する。
我々は,このような骨格のインタラクティブな探索を可能にするソフトウェアツールを提供し,本手法の合成および実世界のデータに対する有効性を実証する。
- 参考スコア(独自算出の注目度): 5.86893539706548
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Node-link diagrams are a popular method for representing graphs that capture
relationships between individuals, businesses, proteins, and telecommunication
endpoints. However, node-link diagrams may fail to convey insights regarding
graph structures, even for moderately sized data of a few hundred nodes, due to
visual clutter. We propose to apply the mapper construction -- a popular tool
in topological data analysis -- to graph visualization, which provides a strong
theoretical basis for summarizing the data while preserving their core
structures. We develop a variation of the mapper construction targeting
weighted, undirected graphs, called {\mog}, which generates homology-preserving
skeletons of graphs. We further show how the adjustment of a single parameter
enables multi-scale skeletonization of the input graph. We provide a software
tool that enables interactive explorations of such skeletons and demonstrate
the effectiveness of our method for synthetic and real-world data.
- Abstract(参考訳): ノードリンクダイアグラムは、個人、ビジネス、タンパク質、通信エンドポイント間の関係をキャプチャするグラフを表現する一般的な方法である。
しかし、ノードリンクダイアグラムは、視覚的なクラッターのため、数百のノードの適度なサイズデータであっても、グラフ構造に関する洞察を伝達できない可能性がある。
本稿では、トポロジカルデータ解析の一般的なツールであるmapper構築をグラフ視覚化に適用し、コア構造を保存しながらデータを要約する強力な理論的基盤を提供する。
我々は, グラフのホモロジー保存骨格を生成する, {\mog} と呼ばれる重み付き無向グラフを対象とするマッパー構成のバリエーションを開発する。
さらに,単一パラメータの調整によって入力グラフのマルチスケールスケルトン化が可能となることを示す。
このような骨格のインタラクティブな探索を可能にし、合成データや実世界データに対する手法の有効性を実証するソフトウェアツールを提供する。
関連論文リスト
- Structure-free Graph Condensation: From Large-scale Graphs to Condensed
Graph-free Data [91.27527985415007]
既存のグラフ凝縮法は、凝縮グラフ内のノードと構造の合同最適化に依存している。
我々は、大規模グラフを小さなグラフノード集合に蒸留する、SFGCと呼ばれる新しい構造自由グラフ凝縮パラダイムを提唱する。
論文 参考訳(メタデータ) (2023-06-05T07:53:52Z) - SynGraphy: Succinct Summarisation of Large Networks via Small Synthetic
Representative Graphs [4.550112751061436]
大規模ネットワークデータセットの構造を視覚的に要約するSynGraphyについて述べる。
入力グラフに類似した構造特性を持つために生成されたより小さなグラフを描画する。
論文 参考訳(メタデータ) (2023-02-15T16:00:15Z) - GrannGAN: Graph annotation generative adversarial networks [72.66289932625742]
本稿では,高次元分布をモデル化し,グラフスケルトンと整合した複雑な関係特徴構造を持つデータの新しい例を生成することの問題点を考察する。
提案するモデルは,タスクを2つのフェーズに分割することで,各データポイントのグラフ構造に制約されたデータ特徴を生成する問題に対処する。
第一に、与えられたグラフのノードに関連する機能の分布をモデル化し、第二に、ノードのフィーチャに条件付きでエッジ機能を補完する。
論文 参考訳(メタデータ) (2022-12-01T11:49:07Z) - Joint Network Topology Inference via a Shared Graphon Model [24.077455621015552]
観測結果から複数のネットワークのトポロジを推定する問題を考察する。
これは非パラメトリックなモデルであり、潜在的に異なるサイズのグラフを描画することができる。
論文 参考訳(メタデータ) (2022-09-17T02:38:58Z) - Template based Graph Neural Network with Optimal Transport Distances [11.56532171513328]
現在のグラフニューラルネットワーク(GNN)アーキテクチャは、2つの重要なコンポーネントに依存している。
本稿では,学習可能なグラフテンプレートとの距離をグラフ表現のコアに配置する新しい視点を提案する。
この距離埋め込みは、Fused Gromov-Wasserstein (FGW) 距離という最適な輸送距離によって構築される。
論文 参考訳(メタデータ) (2022-05-31T12:24:01Z) - SHGNN: Structure-Aware Heterogeneous Graph Neural Network [77.78459918119536]
本稿では、上記の制約に対処する構造対応不均一グラフニューラルネットワーク(SHGNN)を提案する。
まず,メタパス内の中間ノードの局所構造情報を取得するために,特徴伝搬モジュールを利用する。
次に、ツリーアテンションアグリゲータを使用して、グラフ構造情報をメタパス上のアグリゲーションモジュールに組み込む。
最後に、メタパスアグリゲータを利用して、異なるメタパスから集約された情報を融合する。
論文 参考訳(メタデータ) (2021-12-12T14:18:18Z) - Effective and Efficient Graph Learning for Multi-view Clustering [173.8313827799077]
マルチビュークラスタリングのための効率的かつ効率的なグラフ学習モデルを提案する。
本手法はテンソルシャッテンp-ノルムの最小化により異なるビューのグラフ間のビュー類似性を利用する。
提案アルゴリズムは時間経済であり,安定した結果を得るとともに,データサイズによく対応している。
論文 参考訳(メタデータ) (2021-08-15T13:14:28Z) - Accurate Learning of Graph Representations with Graph Multiset Pooling [45.72542969364438]
本稿では,その構造的依存関係に応じてノード間の相互作用をキャプチャするグラフマルチセットトランス (GMT) を提案する。
実験の結果,GMTはグラフ分類ベンチマークにおいて,最先端のグラフプーリング法を著しく上回っていることがわかった。
論文 参考訳(メタデータ) (2021-02-23T07:45:58Z) - GraphOpt: Learning Optimization Models of Graph Formation [72.75384705298303]
本稿では,グラフ構造形成の暗黙的モデルを学ぶエンドツーエンドフレームワークを提案し,その基盤となる最適化機構を明らかにする。
学習した目的は、観測されたグラフプロパティの説明として機能し、ドメイン内の異なるグラフを渡すために自分自身を貸すことができる。
GraphOptは、グラフ内のリンク生成をシーケンシャルな意思決定プロセスとして、最大エントロピー逆強化学習アルゴリズムを用いて解決する。
論文 参考訳(メタデータ) (2020-07-07T16:51:39Z) - Graph Pooling with Node Proximity for Hierarchical Representation
Learning [80.62181998314547]
本稿では,ノード近接を利用したグラフプーリング手法を提案し,そのマルチホップトポロジを用いたグラフデータの階層的表現学習を改善する。
その結果,提案したグラフプーリング戦略は,公開グラフ分類ベンチマークデータセットの集合において,最先端のパフォーマンスを達成できることが示唆された。
論文 参考訳(メタデータ) (2020-06-19T13:09:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。