論文の概要: GraphOpt: Learning Optimization Models of Graph Formation
- arxiv url: http://arxiv.org/abs/2007.03619v1
- Date: Tue, 7 Jul 2020 16:51:39 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-12 18:57:12.817733
- Title: GraphOpt: Learning Optimization Models of Graph Formation
- Title(参考訳): GraphOpt: グラフ生成の学習最適化モデル
- Authors: Rakshit Trivedi, Jiachen Yang, Hongyuan Zha
- Abstract要約: 本稿では,グラフ構造形成の暗黙的モデルを学ぶエンドツーエンドフレームワークを提案し,その基盤となる最適化機構を明らかにする。
学習した目的は、観測されたグラフプロパティの説明として機能し、ドメイン内の異なるグラフを渡すために自分自身を貸すことができる。
GraphOptは、グラフ内のリンク生成をシーケンシャルな意思決定プロセスとして、最大エントロピー逆強化学習アルゴリズムを用いて解決する。
- 参考スコア(独自算出の注目度): 72.75384705298303
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Formation mechanisms are fundamental to the study of complex networks, but
learning them from observations is challenging. In real-world domains, one
often has access only to the final constructed graph, instead of the full
construction process, and observed graphs exhibit complex structural
properties. In this work, we propose GraphOpt, an end-to-end framework that
jointly learns an implicit model of graph structure formation and discovers an
underlying optimization mechanism in the form of a latent objective function.
The learned objective can serve as an explanation for the observed graph
properties, thereby lending itself to transfer across different graphs within a
domain. GraphOpt poses link formation in graphs as a sequential decision-making
process and solves it using maximum entropy inverse reinforcement learning
algorithm. Further, it employs a novel continuous latent action space that aids
scalability. Empirically, we demonstrate that GraphOpt discovers a latent
objective transferable across graphs with different characteristics. GraphOpt
also learns a robust stochastic policy that achieves competitive link
prediction performance without being explicitly trained on this task and
further enables construction of graphs with properties similar to those of the
observed graph.
- Abstract(参考訳): 形成機構は複雑なネットワークの研究に基本であるが、観察から学ぶことは困難である。
実世界の領域では、完全な構築プロセスの代わりに最終的な構築されたグラフにのみアクセスでき、観測されたグラフは複雑な構造特性を示す。
本研究では,グラフ構造形成の暗黙的モデルを共同で学習し,潜在目的関数の形で基盤となる最適化機構を発見するエンドツーエンドフレームワークであるGraphOptを提案する。
学習した目的は、観測されたグラフプロパティの説明として機能し、ドメイン内の異なるグラフ間での移動を可能にする。
GraphOptは、グラフ内のリンク生成をシーケンシャルな意思決定プロセスとして、最大エントロピー逆強化学習アルゴリズムを用いて解決する。
さらに、スケーラビリティを支援する新しい連続潜在アクションスペースも採用している。
実験により,GraphOptは,異なる特性を持つグラフを横断的に移動可能な潜在目的物を発見した。
またgraphoptは、このタスクで明示的に訓練されることなく競合リンク予測性能を達成するロバストな確率ポリシーを学び、さらに観察されたグラフと同様の特性を持つグラフの構築を可能にする。
関連論文リスト
- Motif-Consistent Counterfactuals with Adversarial Refinement for Graph-Level Anomaly Detection [30.618065157205507]
本稿では,グラフレベルの異常検出のための新しい手法Motif-consistent Counterfactuals with Adversarial Refinement (MotifCAR)を提案する。
このモデルは、あるグラフのモチーフと、識別(カテゴリ)情報を含むコアサブグラフと、別のグラフのコンテキストサブグラフを組み合わせて、生の反事実グラフを生成する。
MotifCARは高品質な反ファクトグラフを生成することができる。
論文 参考訳(メタデータ) (2024-07-18T08:04:57Z) - GraphGLOW: Universal and Generalizable Structure Learning for Graph
Neural Networks [72.01829954658889]
本稿では,この新たな問題設定の数学的定義を紹介する。
一つのグラフ共有構造学習者と複数のグラフ固有GNNを協調する一般的なフレームワークを考案する。
十分に訓練された構造学習者は、微調整なしで、目に見えない対象グラフの適応的な構造を直接生成することができる。
論文 参考訳(メタデータ) (2023-06-20T03:33:22Z) - SynGraphy: Succinct Summarisation of Large Networks via Small Synthetic
Representative Graphs [4.550112751061436]
大規模ネットワークデータセットの構造を視覚的に要約するSynGraphyについて述べる。
入力グラフに類似した構造特性を持つために生成されたより小さなグラフを描画する。
論文 参考訳(メタデータ) (2023-02-15T16:00:15Z) - Spectral Augmentations for Graph Contrastive Learning [50.149996923976836]
コントラスト学習は、監督の有無にかかわらず、表現を学習するための第一の方法として現れてきた。
近年の研究では、グラフ表現学習における事前学習の有用性が示されている。
本稿では,グラフの対照的な目的に対する拡張を構築する際に,候補のバンクを提供するためのグラフ変換操作を提案する。
論文 参考訳(メタデータ) (2023-02-06T16:26:29Z) - State of the Art and Potentialities of Graph-level Learning [54.68482109186052]
グラフレベルの学習は、比較、回帰、分類など、多くのタスクに適用されている。
グラフの集合を学習する伝統的なアプローチは、サブストラクチャのような手作りの特徴に依存している。
ディープラーニングは、機能を自動的に抽出し、グラフを低次元表現に符号化することで、グラフレベルの学習をグラフの規模に適応させるのに役立っている。
論文 参考訳(メタデータ) (2023-01-14T09:15:49Z) - Learning Graph Structure from Convolutional Mixtures [119.45320143101381]
本稿では、観測されたグラフと潜伏グラフのグラフ畳み込み関係を提案し、グラフ学習タスクをネットワーク逆(デコンボリューション)問題として定式化する。
固有分解に基づくスペクトル法の代わりに、近似勾配反復をアンロール・トランケートして、グラフデコンボリューションネットワーク(GDN)と呼ばれるパラメータ化ニューラルネットワークアーキテクチャに到達させる。
GDNは、教師付き方式でグラフの分布を学習し、損失関数を適応させることでリンク予測やエッジウェイト回帰タスクを実行し、本質的に帰納的である。
論文 参考訳(メタデータ) (2022-05-19T14:08:15Z) - Graph Self-supervised Learning with Accurate Discrepancy Learning [64.69095775258164]
離散性に基づく自己監督型LeArning(D-SLA)と呼ばれる原図と摂動グラフの正確な相違を学習することを目的としたフレームワークを提案する。
本稿では,分子特性予測,タンパク質機能予測,リンク予測タスクなど,グラフ関連下流タスクにおける本手法の有効性を検証する。
論文 参考訳(メタデータ) (2022-02-07T08:04:59Z) - Kernel-based Graph Learning from Smooth Signals: A Functional Viewpoint [15.577175610442351]
ノード側および観測側情報を組み込んだ新しいグラフ学習フレームワークを提案する。
我々は、Kronecker製品カーネルに付随する再生カーネルヒルベルト空間の関数としてグラフ信号を使用する。
我々は、Kronecker製品カーネルと組み合わせることで、グラフによって説明される依存性とグラフ信号による依存性の両方を捕捉できる新しいグラフベースの正規化手法を開発した。
論文 参考訳(メタデータ) (2020-08-23T16:04:23Z) - Goal-directed graph construction using reinforcement learning [3.291429094499946]
我々は、中央エージェントが試行錯誤によってトポロジを生成する決定過程としてグラフの構築を定式化する。
グラフ構築と改善戦略を学習するための強化学習とグラフニューラルネットワークに基づくアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-01-30T12:11:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。