論文の概要: A Trio Neural Model for Dynamic Entity Relatedness Ranking
- arxiv url: http://arxiv.org/abs/1808.08316v4
- Date: Mon, 12 Jun 2023 20:49:49 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-14 19:11:24.187840
- Title: A Trio Neural Model for Dynamic Entity Relatedness Ranking
- Title(参考訳): 動的エンティティ関連性ランキングのためのトリオニューラルモデル
- Authors: Tu Nguyen, Tuan Tran and Wolfgang Nejdl
- Abstract要約: 動的エンティティ関連性に対するニューラルネットワークに基づくアプローチを提案する。
我々のモデルは、ジョイントフレームワークでリッチで異なるエンティティ表現を学習することができる。
- 参考スコア(独自算出の注目度): 1.4810568221629932
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Measuring entity relatedness is a fundamental task for many natural language
processing and information retrieval applications. Prior work often studies
entity relatedness in static settings and an unsupervised manner. However,
entities in real-world are often involved in many different relationships,
consequently entity-relations are very dynamic over time. In this work, we
propose a neural networkbased approach for dynamic entity relatedness,
leveraging the collective attention as supervision. Our model is capable of
learning rich and different entity representations in a joint framework.
Through extensive experiments on large-scale datasets, we demonstrate that our
method achieves better results than competitive baselines.
- Abstract(参考訳): エンティティ関連性の測定は多くの自然言語処理および情報検索アプリケーションの基本課題である。
以前の研究はしばしば静的な設定と教師なしの方法でエンティティ関連性を研究する。
しかし、現実世界の実体はしばしば多くの異なる関係に関係しており、したがって実体関係は時間とともに非常にダイナミックである。
本研究では,集合的注意を監督として活用し,動的実体関連性に対するニューラルネットワークに基づくアプローチを提案する。
我々のモデルは、ジョイントフレームワークでリッチで異なるエンティティ表現を学習することができる。
大規模データセットの広範な実験を通じて,本手法は競争基準よりも優れた結果が得られることを示す。
関連論文リスト
- Corpus Considerations for Annotator Modeling and Scaling [9.263562546969695]
一般的に使われているユーザトークンモデルは、より複雑なモデルよりも一貫して優れています。
以上の結果から,コーパス統計とアノテータモデリング性能の関係が明らかになった。
論文 参考訳(メタデータ) (2024-04-02T22:27:24Z) - Neural Relational Inference with Fast Modular Meta-learning [25.313516707169498]
グラフニューラルネットワーク(GNN)は、実体と関係からなる多くの力学系に対して有効なモデルである。
リレーショナル推論は、これらの相互作用を推測し、観測データからダイナミクスを学習する問題である。
関係推論は、多くの課題を解決するために、ニューラルネットワークモジュールをさまざまな方法で構成するように訓練する、テクティモジュラーなメタラーニング問題である。
論文 参考訳(メタデータ) (2023-10-10T21:05:13Z) - Multi-modal Contrastive Representation Learning for Entity Alignment [57.92705405276161]
マルチモーダルなエンティティアライメントは、2つの異なるマルチモーダルな知識グラフ間で等価なエンティティを識別することを目的としている。
マルチモーダルコントラスト学習に基づくエンティティアライメントモデルであるMCLEAを提案する。
特に、MCLEAはまず複数のモダリティから複数の個別表現を学習し、その後、モダリティ内およびモダリティ間相互作用を共同でモデル化するコントラスト学習を行う。
論文 参考訳(メタデータ) (2022-09-02T08:59:57Z) - Entity-Graph Enhanced Cross-Modal Pretraining for Instance-level Product
Retrieval [152.3504607706575]
本研究の目的は, 細粒度製品カテゴリを対象とした, 弱制御型マルチモーダル・インスタンスレベルの製品検索である。
まず、Product1Mデータセットをコントリビュートし、2つの実際のインスタンスレベルの検索タスクを定義します。
我々は、マルチモーダルデータから重要な概念情報を組み込むことができるより効果的なクロスモーダルモデルを訓練するために活用する。
論文 参考訳(メタデータ) (2022-06-17T15:40:45Z) - Dynamic Relation Discovery and Utilization in Multi-Entity Time Series
Forecasting [92.32415130188046]
多くの現実世界のシナリオでは、実体の間に決定的かつ暗黙的な関係が存在する可能性がある。
本稿では,自動グラフ学習(A2GNN)を用いたマルチグラフニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2022-02-18T11:37:04Z) - Discovering Latent Representations of Relations for Interacting Systems [2.2844557930775484]
本稿では,関係の数が不明であるか,多種類の関係が存在する場合でも柔軟に適用可能なDiScovering Latent Relation (DSLR)モデルを提案する。
DSLRモデルの柔軟性は、潜在空間におけるエンティティ間の関係を表すエンコーダの設計概念から来ています。
実験の結果,提案手法は未知の複素数を持つ動的グラフを解析するのに適していることがわかった。
論文 参考訳(メタデータ) (2021-11-10T03:32:09Z) - Multi-Agent Imitation Learning with Copulas [102.27052968901894]
マルチエージェント模倣学習は、観察と行動のマッピングを学習することで、デモからタスクを実行するために複数のエージェントを訓練することを目的としている。
本稿では,確率変数間の依存を捉える強力な統計ツールである copula を用いて,マルチエージェントシステムにおける相関関係と協調関係を明示的にモデル化する。
提案モデルでは,各エージェントの局所的行動パターンと,エージェント間の依存構造のみをフルにキャプチャするコプラ関数を別々に学習することができる。
論文 参考訳(メタデータ) (2021-07-10T03:49:41Z) - Neural Production Systems [90.75211413357577]
視覚環境は、異なるオブジェクトまたはエンティティから構成される。
イメージをエンティティに分割するために、ディープラーニング研究者は構造的誘導バイアスを提案した。
私たちは認知科学からインスピレーションを得て、一連のルールテンプレートからなる古典的なアプローチを復活させます。
このアーキテクチャは柔軟でダイナミックな制御フローを実現し、エンティティ固有およびルールベースの情報を分解するのに役立つ。
論文 参考訳(メタデータ) (2021-03-02T18:53:20Z) - Relation-Guided Representation Learning [53.60351496449232]
本稿では,サンプル関係を明示的にモデル化し,活用する表現学習手法を提案する。
私たちのフレームワークは、サンプル間の関係をよく保存します。
サンプルをサブスペースに埋め込むことにより,本手法が大規模なサンプル外問題に対処可能であることを示す。
論文 参考訳(メタデータ) (2020-07-11T10:57:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。