論文の概要: Contextual Hourglass Network for Semantic Segmentation of High Resolution Aerial Imagery
- arxiv url: http://arxiv.org/abs/1810.12813v4
- Date: Wed, 5 Jun 2024 02:31:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-07 05:08:04.013518
- Title: Contextual Hourglass Network for Semantic Segmentation of High Resolution Aerial Imagery
- Title(参考訳): 高分解能空中画像のセマンティックセグメンテーションのためのテクスチュアル・ホールグラスネットワーク
- Authors: Panfeng Li, Youzuo Lin, Emily Schultz-Fellenz,
- Abstract要約: 本研究では,新しいセマンティックセグメンテーション手法を開発し,それをContextual Hourglass Networkと呼ぶ。
本手法では,予測の堅牢性を向上させるため,新しい時間ガラスモジュールを設計する。
さらに,複数の時間ガラスモジュールを接続することで,エンコーダとデコーダのスタック構造をさらに活用する。
- 参考スコア(独自算出の注目度): 5.694721155544124
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Semantic segmentation for aerial imagery is a challenging and important problem in remotely sensed imagery analysis. In recent years, with the success of deep learning, various convolutional neural network (CNN) based models have been developed. However, due to the varying sizes of the objects and imbalanced class labels, it can be challenging to obtain accurate pixel-wise semantic segmentation results. To address those challenges, we develop a novel semantic segmentation method and call it Contextual Hourglass Network. In our method, in order to improve the robustness of the prediction, we design a new contextual hourglass module which incorporates attention mechanism on processed low-resolution featuremaps to exploit the contextual semantics. We further exploit the stacked encoder-decoder structure by connecting multiple contextual hourglass modules from end to end. This architecture can effectively extract rich multi-scale features and add more feedback loops for better learning contextual semantics through intermediate supervision. To demonstrate the efficacy of our semantic segmentation method, we test it on Potsdam and Vaihingen datasets. Through the comparisons to other baseline methods, our method yields the best results on overall performance.
- Abstract(参考訳): 航空画像のセマンティックセグメンテーションは、リモートセンシング画像解析において困難かつ重要な問題である。
近年、ディープラーニングの成功により、様々な畳み込みニューラルネットワーク(CNN)ベースのモデルが開発されている。
しかし、オブジェクトのサイズや不均衡なクラスラベルによって、正確なピクセル単位のセマンティックセグメンテーション結果を得ることは困難である。
これらの課題に対処するため,新しいセマンティックセグメンテーション手法を開発し,それをContextual Hourglass Networkと呼ぶ。
提案手法では,予測の堅牢性を改善するために,処理された低解像度特徴写像に対する注意機構を組み込んだ新しい時間ガラスモジュールを設計し,文脈意味論を活用する。
さらに,複数の時間ガラスモジュールを端から端まで接続することで,エンコーダとデコーダの重ね合わせ構造をさらに活用する。
このアーキテクチャは、リッチなマルチスケール機能を効果的に抽出し、中間管理を通じてコンテキストセマンティクスを学習するためのフィードバックループを追加することができる。
セマンティックセグメンテーション法の有効性を実証するため,ポツダムとヴァイヒンゲンのデータセットで検証した。
他のベースライン手法との比較により,本手法は全体の性能について最高の結果が得られる。
関連論文リスト
- Learning Semantic Segmentation with Query Points Supervision on Aerial Images [57.09251327650334]
セマンティックセグメンテーションアルゴリズムを学習するための弱教師付き学習アルゴリズムを提案する。
提案手法は正確なセマンティックセグメンテーションを行い,手作業のアノテーションに要するコストと時間を大幅に削減することで効率を向上する。
論文 参考訳(メタデータ) (2023-09-11T14:32:04Z) - Empirical Study of Multi-Task Hourglass Model for Semantic Segmentation
Task [0.7614628596146599]
エッジ検出, 意味輪郭, 距離変換タスクを用いて, セマンティックセグメンテーションタスクを補完するマルチタスク手法を提案する。
本研究では,Cityscapes,CamVid,Freiburg Forestの各データセットにおける時間ガラスモデルのマルチタスク環境における学習の有効性を示す。
論文 参考訳(メタデータ) (2021-05-28T01:08:10Z) - CTNet: Context-based Tandem Network for Semantic Segmentation [77.4337867789772]
本研究では,空間コンテキスト情報とチャネルコンテキスト情報とを対話的に探索し,新しいコンテキストベースタンデムネットワーク(CTNet)を提案する。
セマンティックセグメンテーションのための学習表現の性能をさらに向上するため、2つのコンテキストモジュールの結果を適応的に統合する。
論文 参考訳(メタデータ) (2021-04-20T07:33:11Z) - A Novel Upsampling and Context Convolution for Image Semantic
Segmentation [0.966840768820136]
最近のセマンティックセグメンテーションの方法は、しばしば深い畳み込みニューラルネットワークを用いたエンコーダデコーダ構造を採用している。
ネットワーク内の画像の空間情報を効率的に保存するために,ガイドフィルタに基づく高密度アップサンプリング畳み込み法を提案する。
ADE20KとPascal-Contextのベンチマークデータセットでは,それぞれ82.86%,81.62%の画素精度を記録した。
論文 参考訳(メタデータ) (2021-03-20T06:16:42Z) - Context Decoupling Augmentation for Weakly Supervised Semantic
Segmentation [53.49821324597837]
微調整されたセマンティックセグメンテーションは、近年深く研究されている困難な問題です。
本稿では、オブジェクトが現れる固有のコンテキストを変更する Context Decoupling Augmentation (CDA) メソッドを紹介します。
提案手法の有効性を検証するため, PASCAL VOC 2012データセットにいくつかの代替ネットワークアーキテクチャを用いた広範な実験を行い, CDAが様々なWSSS手法を新たな最先端技術に拡張できることを実証した。
論文 参考訳(メタデータ) (2021-03-02T15:05:09Z) - Three Ways to Improve Semantic Segmentation with Self-Supervised Depth
Estimation [90.87105131054419]
ラベルなし画像列からの自己教師付き単眼深度推定により強化された半教師付きセマンティックセマンティックセマンティックセマンティクスのフレームワークを提案する。
提案されたモデルをCityscapesデータセット上で検証する。
論文 参考訳(メタデータ) (2020-12-19T21:18:03Z) - Group-Wise Semantic Mining for Weakly Supervised Semantic Segmentation [49.90178055521207]
この研究は、画像レベルのアノテーションとピクセルレベルのセグメンテーションのギャップを埋めることを目標に、弱い監督されたセマンティックセグメンテーション(WSSS)に対処する。
画像群における意味的依存関係を明示的にモデル化し,より信頼性の高い擬似的基盤構造を推定する,新たなグループ学習タスクとしてWSSSを定式化する。
特に、入力画像がグラフノードとして表現されるグループ単位のセマンティックマイニングのためのグラフニューラルネットワーク(GNN)を考案する。
論文 参考訳(メタデータ) (2020-12-09T12:40:13Z) - Shape-aware Semi-supervised 3D Semantic Segmentation for Medical Images [24.216869988183092]
本稿では,豊富なラベルのないデータを活用し,セグメント化出力に幾何学的形状制約を課す,形状認識型半教師付きセグメンテーション戦略を提案する。
物体表面のセマンティックセグメンテーションと符号付き距離マップDMを共同で予測するマルチタスクディープネットワークを開発した。
実験の結果,提案手法は形状推定を改良し,最先端の手法よりも優れていることがわかった。
論文 参考訳(メタデータ) (2020-07-21T11:44:52Z) - Image Segmentation Using Deep Learning: A Survey [58.37211170954998]
イメージセグメンテーションは、画像処理とコンピュータビジョンにおいて重要なトピックである。
深層学習モデルを用いた画像セグメンテーション手法の開発を目的とした研究が,これまでに数多く行われている。
論文 参考訳(メタデータ) (2020-01-15T21:37:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。