論文の概要: PVNet: A LRCN Architecture for Spatio-Temporal Photovoltaic
PowerForecasting from Numerical Weather Prediction
- arxiv url: http://arxiv.org/abs/1902.01453v4
- Date: Sat, 13 Jan 2024 19:33:12 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-22 13:11:07.921860
- Title: PVNet: A LRCN Architecture for Spatio-Temporal Photovoltaic
PowerForecasting from Numerical Weather Prediction
- Title(参考訳): PVNet:数値気象予測による時空間太陽光発電用LRCNアーキテクチャ
- Authors: Johan Mathe, Nina Miolane, Nicolas Sebastien, Jeremie Lequeux
- Abstract要約: 数値気象予測(NWP)を用いた長期反復畳み込みネットワークを導入し,24時間および48時間の予測地平線におけるPV生産を予測した。
我々は,国立海洋大気庁(NOAA)のNWPデータセットを用いて,ドイツにおける空間的に集積されたPV生産を予測する。
- 参考スコア(独自算出の注目度): 2.913033886371052
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Photovoltaic (PV) power generation has emerged as one of the lead renewable
energy sources. Yet, its production is characterized by high uncertainty, being
dependent on weather conditions like solar irradiance and temperature.
Predicting PV production, even in the 24-hour forecast, remains a challenge and
leads energy providers to left idling - often carbon emitting - plants. In this
paper, we introduce a Long-Term Recurrent Convolutional Network using Numerical
Weather Predictions (NWP) to predict, in turn, PV production in the 24-hour and
48-hour forecast horizons. This network architecture fully leverages both
temporal and spatial weather data, sampled over the whole geographical area of
interest. We train our model on an NWP dataset from the National Oceanic and
Atmospheric Administration (NOAA) to predict spatially aggregated PV production
in Germany. We compare its performance to the persistence model and
state-of-the-art methods.
- Abstract(参考訳): 太陽光発電(PV)発電は再生可能エネルギーの主要源の1つである。
しかし、その生産は、太陽の照度や温度などの気象条件に依存する高い不確実性によって特徴づけられる。
24時間の予測でさえ、pv生産予測は依然として課題であり、エネルギー供給者はアイドリング工場(しばしば炭素放出プラント)を離れる。
本稿では,数値気象予測(NWP)を用いた長期反復畳み込みネットワークを導入し,24時間および48時間の予測地平線におけるPV生産の予測を行う。
このネットワークアーキテクチャは、地理的領域全体にわたってサンプリングされた時間的および空間的な気象データの両方を十分に活用している。
我々は,国立海洋大気庁(NOAA)のNWPデータセットを用いて,ドイツにおける空間集約型PV生産を予測する。
その性能を永続化モデルと最先端メソッドと比較する。
関連論文リスト
- Solarcast-ML: Per Node GraphCast Extension for Solar Energy Production [0.0]
このプロジェクトは、太陽エネルギー生産予測機能を統合することで、グローバル気象予報のための最先端グラフニューラルネットワーク(GNN)であるGraphCastモデルの拡張を示す。
提案手法は、GraphCastが生成した天気予報を利用して、ニューラルネットワークモデルを用いて、様々な気象条件に基づいて実際の太陽出力と潜在的な太陽出力の比率を予測する。
その結果, 太陽放射の正確な予測, 収束挙動, トレーニング損失の低減, および太陽放射パターンの正確な予測において, モデルの有効性が示された。
論文 参考訳(メタデータ) (2024-06-19T13:47:05Z) - Back to the Future: GNN-based NO$_2$ Forecasting via Future Covariates [49.93577170464313]
都市全域にわたる地上監視ネットワークにおける大気質観測について検討する。
我々は過去と将来の共変分を現在の観測に埋め込む条件付きブロックを提案する。
将来の気象情報に対する条件付けは,過去の交通状況を考えるよりも影響が大きいことが判明した。
論文 参考訳(メタデータ) (2024-04-08T09:13:16Z) - FengWu-GHR: Learning the Kilometer-scale Medium-range Global Weather
Forecasting [56.73502043159699]
この研究は、データ駆動型世界天気予報モデルであるFengWu-GHRを、0.09$circ$水平解像度で実行した。
低解像度モデルから事前知識を継承することにより、MLベースの高解像度予測を操作するための扉を開く新しいアプローチを導入する。
2022年の天気予報は、FengWu-GHRがIFS-HRESよりも優れていることを示している。
論文 参考訳(メタデータ) (2024-01-28T13:23:25Z) - Tree-based Forecasting of Day-ahead Solar Power Generation from Granular
Meteorological Features [1.8638865257327277]
このような予測を生成するには、最先端のツリーベース機械学習手法を用いる。
ベルギーのデータと1時間の解像度で日毎のPV発電を予測しています。
論文 参考訳(メタデータ) (2023-11-30T08:47:37Z) - Improving day-ahead Solar Irradiance Time Series Forecasting by
Leveraging Spatio-Temporal Context [46.72071291175356]
太陽発電は二酸化炭素の排出量を大幅に削減することで気候変動を緩和する大きな可能性を秘めている。
しかし、太陽光の固有の変動は、電力網に太陽エネルギーをシームレスに統合する上で大きな課題となる。
本稿では,衛星データを用いた時間的文脈の活用を目的としたディープラーニングアーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-06-01T19:54:39Z) - Long-term Wind Power Forecasting with Hierarchical Spatial-Temporal
Transformer [112.12271800369741]
風力発電は、再生可能、汚染のないその他の利点により、世界中の注目を集めている。
正確な風力発電予測(WPF)は、電力系統の運用における電力変動を効果的に低減することができる。
既存の手法は主に短期的な予測のために設計されており、効果的な時空間的特徴増強が欠如している。
論文 参考訳(メタデータ) (2023-05-30T04:03:15Z) - Pangu-Weather: A 3D High-Resolution Model for Fast and Accurate Global
Weather Forecast [91.9372563527801]
我々は,世界天気予報を迅速かつ高精度に予測するためのディープラーニングベースのシステムであるPangu-Weatherを紹介する。
初めてAIベースの手法が、最先端の数値天気予報法(NWP)を精度で上回った。
Pangu-Weatherは、極端な天気予報や大規模なアンサンブル予測など、幅広い下流予測シナリオをサポートしている。
論文 参考訳(メタデータ) (2022-11-03T17:19:43Z) - Location-aware green energy availability forecasting for multiple time
frames in smart buildings: The case of Estonia [0.5156484100374058]
本研究の目的は、異なる機械学習モデルを用いて、天気と派生した特徴に基づいてPVシステムの出力パワーを予測することである。
目的は、データを調べて出力パワーを正確に予測する最適なモデルを得ることである。
論文 参考訳(メタデータ) (2022-10-04T14:02:43Z) - Feature Construction and Selection for PV Solar Power Modeling [1.8960797847221296]
太陽光発電(PV)発電を予測するモデルを構築することで、意思決定者はエネルギー不足を補うことができる。
太陽エネルギーの出力は、光や天気など多くの要因に依存する時系列データである。
本研究では, 過去のデータをもとに, 1時間先進太陽エネルギー予測のための機械学習フレームワークを開発した。
論文 参考訳(メタデータ) (2022-02-13T06:49:28Z) - SunCast: Solar Irradiance Nowcasting from Geosynchronous Satellite Data [2.285928372124628]
本稿では,太陽フレーミングを次のフレーム予測問題として扱う畳み込み長短期記憶ネットワークモデルを提案する。
当社のモデルは、GPUを使わずに1台のマシン上で、北米全体の太陽光放射を最大3時間60秒で予測できる。
論文 参考訳(メタデータ) (2022-01-17T01:55:26Z) - A generative adversarial network approach to (ensemble) weather
prediction [91.3755431537592]
本研究では,500hPaの圧力レベル,2m温度,24時間の総降水量を予測するために,条件付き深部畳み込み生成対向ネットワークを用いた。
提案されたモデルは、2019年に関連する気象分野を予測することを目的として、2015年から2018年までの4年間のERA5の再分析データに基づいて訓練されている。
論文 参考訳(メタデータ) (2020-06-13T20:53:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。