論文の概要: A generative adversarial network approach to (ensemble) weather
prediction
- arxiv url: http://arxiv.org/abs/2006.07718v1
- Date: Sat, 13 Jun 2020 20:53:17 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-21 21:00:30.043301
- Title: A generative adversarial network approach to (ensemble) weather
prediction
- Title(参考訳): 天気予報(アンサンブル)に対する生成的敵ネットワークアプローチ
- Authors: Alexander Bihlo
- Abstract要約: 本研究では,500hPaの圧力レベル,2m温度,24時間の総降水量を予測するために,条件付き深部畳み込み生成対向ネットワークを用いた。
提案されたモデルは、2019年に関連する気象分野を予測することを目的として、2015年から2018年までの4年間のERA5の再分析データに基づいて訓練されている。
- 参考スコア(独自算出の注目度): 91.3755431537592
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We use a conditional deep convolutional generative adversarial network to
predict the geopotential height of the 500 hPa pressure level, the two-meter
temperature and the total precipitation for the next 24 hours over Europe. The
proposed models are trained on 4 years of ERA5 reanalysis data from 2015-2018
with the goal to predict the associated meteorological fields in 2019. The
forecasts show a good qualitative and quantitative agreement with the true
reanalysis data for the geopotential height and two-meter temperature, while
failing for total precipitation, thus indicating that weather forecasts based
on data alone may be possible for specific meteorological parameters. We
further use Monte-Carlo dropout to develop an ensemble weather prediction
system based purely on deep learning strategies, which is computationally cheap
and further improves the skill of the forecasting model, by allowing to
quantify the uncertainty in the current weather forecast as learned by the
model.
- Abstract(参考訳): 我々は,条件付き深層畳み込み生成型逆向ネットワークを用いて,500 hpaの圧力レベル,2メートルの温度,および今後24時間ヨーロッパ全体での降水量の地球電位の高さを予測した。
提案されたモデルは、2015年から2018年までの4年間のera5再解析データに基づいてトレーニングされ、2019年に関連する気象分野を予測することを目的としている。
これらの予測は,全降水に失敗しながら,地球高と2メートル温度の真の再解析データと良好な定性的かつ定量的な一致を示し,特定の気象パラメータに対してデータのみに基づく天気予報が可能であることを示唆している。
さらに,モンテカルロの降雨量を用いて,深層学習戦略に基づくアンサンブル天気予報システムの開発を行う。これは計算コストが低く,予測モデルのスキルが向上し,モデルが学習した現在の天気予報の不確実性を定量化することができる。
関連論文リスト
- DUNE: A Machine Learning Deep UNet++ based Ensemble Approach to Monthly, Seasonal and Annual Climate Forecasting [0.0]
Deep UNet++ベースの新しいニューラルネットワークであるEnsemble(DUNE)が導入されている。
年間平均気温は2メートル(T2m)、海面温度(SST)である。
これらの予測は、すべての領域に対する持続性、気候学、多重線形回帰よりも優れる。
論文 参考訳(メタデータ) (2024-08-12T16:22:30Z) - An ensemble of data-driven weather prediction models for operational sub-seasonal forecasting [0.08106028186803123]
運用可能なマルチモデルアンサンブル天気予報システムを提案する。
データ駆動型天気予報モデルを用いたマルチモデルアンサンブル手法により、最先端のサブシーズン・シーズン・シーズン予測を実現することができる。
論文 参考訳(メタデータ) (2024-03-22T20:01:53Z) - Uncertainty quantification for data-driven weather models [0.0]
本研究では,現在最先端の決定論的データ駆動気象モデルであるPangu-Weatherから確率的天気予報を生成するための不確実性定量化手法について検討・比較する。
具体的には,摂動によるアンサンブル予測を初期条件と比較し,予測の不確実性を定量化する手法を提案する。
欧州における選択された気象変数の中距離予測のケーススタディにおいて,不確実な定量化手法を用いてパング・ウェザーモデルを用いて得られた確率的予測は,有望な結果を示す。
論文 参考訳(メタデータ) (2024-03-20T10:07:51Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
非対称な最適化を行い、極端な天気予報を得るために極端な値を強調する新しい損失関数であるExlossを導入する。
また,複数のランダムサンプルを用いて予測結果の不確かさをキャプチャするExBoosterについても紹介する。
提案手法は,上位中距離予測モデルに匹敵する全体的な予測精度を維持しつつ,極端気象予測における最先端性能を達成することができる。
論文 参考訳(メタデータ) (2024-02-02T10:34:13Z) - FengWu-GHR: Learning the Kilometer-scale Medium-range Global Weather
Forecasting [56.73502043159699]
この研究は、データ駆動型世界天気予報モデルであるFengWu-GHRを、0.09$circ$水平解像度で実行した。
低解像度モデルから事前知識を継承することにより、MLベースの高解像度予測を操作するための扉を開く新しいアプローチを導入する。
2022年の天気予報は、FengWu-GHRがIFS-HRESよりも優れていることを示している。
論文 参考訳(メタデータ) (2024-01-28T13:23:25Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
農業計画や保険には1年前から予測される高品質の干ばつが不可欠だ。
私たちは、体系的なエンドツーエンドアプローチを採用するエンドツーエンドアプローチを導入することで、干ばつデータに取り組みます。
主な発見は、TransformerモデルであるEarthFormerが、正確な短期(最大6ヶ月)の予測を行う際の例外的なパフォーマンスである。
論文 参考訳(メタデータ) (2023-09-12T13:28:06Z) - GraphCast: Learning skillful medium-range global weather forecasting [107.40054095223779]
我々は、再分析データから直接トレーニングできる「GraphCast」と呼ばれる機械学習ベースの手法を導入する。
全世界で10日以上、0.25度で、数百の気象変動を1分以内で予測する。
我々は,GraphCastが1380の検証対象の90%において,最も正確な運用決定システムよりも優れていることを示す。
論文 参考訳(メタデータ) (2022-12-24T18:15:39Z) - Pangu-Weather: A 3D High-Resolution Model for Fast and Accurate Global
Weather Forecast [91.9372563527801]
我々は,世界天気予報を迅速かつ高精度に予測するためのディープラーニングベースのシステムであるPangu-Weatherを紹介する。
初めてAIベースの手法が、最先端の数値天気予報法(NWP)を精度で上回った。
Pangu-Weatherは、極端な天気予報や大規模なアンサンブル予測など、幅広い下流予測シナリオをサポートしている。
論文 参考訳(メタデータ) (2022-11-03T17:19:43Z) - Short-term precipitation prediction using deep learning [5.1589108738893215]
気象フィールドの1つのフレームを用いた3次元畳み込みニューラルネットワークは降水空間分布を予測することができることを示す。
このネットワークは、気象学の39年 (1980-2018) のデータと、連続した米国上空の毎日の降水に基づいて開発されている。
論文 参考訳(メタデータ) (2021-10-05T06:37:24Z) - SmaAt-UNet: Precipitation Nowcasting using a Small Attention-UNet
Architecture [5.28539620288341]
データ駆動型ニューラルネットワークのアプローチにより,正確な降水量を推定できることが示唆された。
オランダ地域の降水マップとフランスのクラウドカバレッジのバイナリ画像を用いて、実際のデータセットに対する我々のアプローチを評価した。
論文 参考訳(メタデータ) (2020-07-08T20:33:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。