On Binscatter
- URL: http://arxiv.org/abs/1902.09608v5
- Date: Wed, 1 May 2024 02:30:58 GMT
- Title: On Binscatter
- Authors: Matias D. Cattaneo, Richard K. Crump, Max H. Farrell, Yingjie Feng,
- Abstract summary: We study the properties of this method formally and develop enhanced visualization and econometric binscatter tools.
General purpose software in Python, R, and Stata is provided.
- Score: 0.7999703756441756
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Binscatter is a popular method for visualizing bivariate relationships and conducting informal specification testing. We study the properties of this method formally and develop enhanced visualization and econometric binscatter tools. These include estimating conditional means with optimal binning and quantifying uncertainty. We also highlight a methodological problem related to covariate adjustment that can yield incorrect conclusions. We revisit two applications using our methodology and find substantially different results relative to those obtained using prior informal binscatter methods. General purpose software in Python, R, and Stata is provided. Our technical work is of independent interest for the nonparametric partition-based estimation literature.
Related papers
- Model-free Methods for Event History Analysis and Efficient Adjustment (PhD Thesis) [55.2480439325792]
This thesis is a series of independent contributions to statistics unified by a model-free perspective.
The first chapter elaborates on how a model-free perspective can be used to formulate flexible methods that leverage prediction techniques from machine learning.
The second chapter studies the concept of local independence, which describes whether the evolution of one process is directly influenced by another.
arXiv Detail & Related papers (2025-02-11T19:24:09Z) - Optimal Baseline Corrections for Off-Policy Contextual Bandits [61.740094604552475]
We aim to learn decision policies that optimize an unbiased offline estimate of an online reward metric.
We propose a single framework built on their equivalence in learning scenarios.
Our framework enables us to characterize the variance-optimal unbiased estimator and provide a closed-form solution for it.
arXiv Detail & Related papers (2024-05-09T12:52:22Z) - Estimating Barycenters of Distributions with Neural Optimal Transport [93.28746685008093]
We propose a new scalable approach for solving the Wasserstein barycenter problem.
Our methodology is based on the recent Neural OT solver.
We also establish theoretical error bounds for our proposed approach.
arXiv Detail & Related papers (2024-02-06T09:17:07Z) - Partially factorized variational inference for high-dimensional mixed models [0.0]
Variational inference is a popular way to perform such computations, especially in the Bayesian context.
We show that standard mean-field variational inference dramatically underestimates posterior uncertainty in high-dimensions.
We then show how appropriately relaxing the mean-field assumption leads to methods whose uncertainty quantification does not deteriorate in high-dimensions.
arXiv Detail & Related papers (2023-12-20T16:12:37Z) - Positive definite nonparametric regression using an evolutionary
algorithm with application to covariance function estimation [0.0]
We propose a novel nonparametric regression framework for estimating covariance functions of stationary processes.
Our method can impose positive definiteness, as well as isotropy and monotonicity, on the estimators.
Our method provides more reliable estimates for long-range dependence.
arXiv Detail & Related papers (2023-04-25T22:01:14Z) - Quantile Off-Policy Evaluation via Deep Conditional Generative Learning [21.448553360543478]
Off-Policy evaluation (OPE) is concerned with evaluating a new target policy using offline data generated by a potentially different behavior policy.
We propose a doubly-robust inference procedure for quantile OPE in sequential decision making.
We demonstrate the advantages of this proposed estimator through both simulations and a real-world dataset from a short-video platform.
arXiv Detail & Related papers (2022-12-29T22:01:43Z) - Scalable Personalised Item Ranking through Parametric Density Estimation [53.44830012414444]
Learning from implicit feedback is challenging because of the difficult nature of the one-class problem.
Most conventional methods use a pairwise ranking approach and negative samplers to cope with the one-class problem.
We propose a learning-to-rank approach, which achieves convergence speed comparable to the pointwise counterpart.
arXiv Detail & Related papers (2021-05-11T03:38:16Z) - Scalable Marginal Likelihood Estimation for Model Selection in Deep
Learning [78.83598532168256]
Marginal-likelihood based model-selection is rarely used in deep learning due to estimation difficulties.
Our work shows that marginal likelihoods can improve generalization and be useful when validation data is unavailable.
arXiv Detail & Related papers (2021-04-11T09:50:24Z) - Weight-of-evidence 2.0 with shrinkage and spline-binning [3.925373521409752]
We propose a formalized, data-driven and powerful method to transform categorical predictors.
We extend upon the weight-of-evidence approach and propose to estimate the proportions using shrinkage estimators.
We present the results of a series of experiments in a fraud detection setting, which illustrate the effectiveness of the presented approach.
arXiv Detail & Related papers (2021-01-05T13:13:16Z) - A similarity-based Bayesian mixture-of-experts model [0.5156484100374058]
We present a new non-parametric mixture-of-experts model for multivariate regression problems.
Using a conditionally specified model, predictions for out-of-sample inputs are based on similarities to each observed data point.
Posterior inference is performed on the parameters of the mixture as well as the distance metric.
arXiv Detail & Related papers (2020-12-03T18:08:30Z) - Doubly Robust Semiparametric Difference-in-Differences Estimators with
High-Dimensional Data [15.27393561231633]
We propose a doubly robust two-stage semiparametric difference-in-difference estimator for estimating heterogeneous treatment effects.
The first stage allows a general set of machine learning methods to be used to estimate the propensity score.
In the second stage, we derive the rates of convergence for both the parametric parameter and the unknown function.
arXiv Detail & Related papers (2020-09-07T15:14:29Z) - Nonparametric Score Estimators [49.42469547970041]
Estimating the score from a set of samples generated by an unknown distribution is a fundamental task in inference and learning of probabilistic models.
We provide a unifying view of these estimators under the framework of regularized nonparametric regression.
We propose score estimators based on iterative regularization that enjoy computational benefits from curl-free kernels and fast convergence.
arXiv Detail & Related papers (2020-05-20T15:01:03Z) - Machine learning for causal inference: on the use of cross-fit
estimators [77.34726150561087]
Doubly-robust cross-fit estimators have been proposed to yield better statistical properties.
We conducted a simulation study to assess the performance of several estimators for the average causal effect (ACE)
When used with machine learning, the doubly-robust cross-fit estimators substantially outperformed all of the other estimators in terms of bias, variance, and confidence interval coverage.
arXiv Detail & Related papers (2020-04-21T23:09:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.