Nonparametric Score Estimators
- URL: http://arxiv.org/abs/2005.10099v2
- Date: Tue, 30 Jun 2020 06:41:58 GMT
- Title: Nonparametric Score Estimators
- Authors: Yuhao Zhou, Jiaxin Shi, Jun Zhu
- Abstract summary: Estimating the score from a set of samples generated by an unknown distribution is a fundamental task in inference and learning of probabilistic models.
We provide a unifying view of these estimators under the framework of regularized nonparametric regression.
We propose score estimators based on iterative regularization that enjoy computational benefits from curl-free kernels and fast convergence.
- Score: 49.42469547970041
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Estimating the score, i.e., the gradient of log density function, from a set
of samples generated by an unknown distribution is a fundamental task in
inference and learning of probabilistic models that involve flexible yet
intractable densities. Kernel estimators based on Stein's methods or score
matching have shown promise, however their theoretical properties and
relationships have not been fully-understood. We provide a unifying view of
these estimators under the framework of regularized nonparametric regression.
It allows us to analyse existing estimators and construct new ones with
desirable properties by choosing different hypothesis spaces and regularizers.
A unified convergence analysis is provided for such estimators. Finally, we
propose score estimators based on iterative regularization that enjoy
computational benefits from curl-free kernels and fast convergence.
Related papers
- Debiased Regression for Root-N-Consistent Conditional Mean Estimation [10.470114319701576]
We introduce a debiasing method for regression estimators, including high-dimensional and nonparametric regression estimators.
Our theoretical analysis demonstrates that the proposed estimator achieves $sqrtn$-consistency and normality under a mild convergence rate condition.
The proposed method offers several advantages, including improved estimation accuracy and simplified construction of confidence intervals.
arXiv Detail & Related papers (2024-11-18T17:25:06Z) - Semiparametric conformal prediction [79.6147286161434]
Risk-sensitive applications require well-calibrated prediction sets over multiple, potentially correlated target variables.
We treat the scores as random vectors and aim to construct the prediction set accounting for their joint correlation structure.
We report desired coverage and competitive efficiency on a range of real-world regression problems.
arXiv Detail & Related papers (2024-11-04T14:29:02Z) - Multivariate root-n-consistent smoothing parameter free matching estimators and estimators of inverse density weighted expectations [51.000851088730684]
We develop novel modifications of nearest-neighbor and matching estimators which converge at the parametric $sqrt n $-rate.
We stress that our estimators do not involve nonparametric function estimators and in particular do not rely on sample-size dependent parameters smoothing.
arXiv Detail & Related papers (2024-07-11T13:28:34Z) - On diffusion-based generative models and their error bounds: The log-concave case with full convergence estimates [5.13323375365494]
We provide theoretical guarantees for the convergence behaviour of diffusion-based generative models under strongly log-concave data.
Our class of functions used for score estimation is made of Lipschitz continuous functions avoiding any Lipschitzness assumption on the score function.
This approach yields the best known convergence rate for our sampling algorithm.
arXiv Detail & Related papers (2023-11-22T18:40:45Z) - Statistical Barriers to Affine-equivariant Estimation [10.077727846124633]
We investigate the quantitative performance of affine-equivariant estimators for robust mean estimation.
We find that classical estimators are either quantitatively sub-optimal or lack any quantitative guarantees.
We construct a new affine-equivariant estimator which nearly matches our lower bound.
arXiv Detail & Related papers (2023-10-16T18:42:00Z) - Bayesian Hierarchical Models for Counterfactual Estimation [12.159830463756341]
We propose a probabilistic paradigm to estimate a diverse set of counterfactuals.
We treat the perturbations as random variables endowed with prior distribution functions.
A gradient based sampler with superior convergence characteristics efficiently computes the posterior samples.
arXiv Detail & Related papers (2023-01-21T00:21:11Z) - Statistical Efficiency of Score Matching: The View from Isoperimetry [96.65637602827942]
We show a tight connection between statistical efficiency of score matching and the isoperimetric properties of the distribution being estimated.
We formalize these results both in the sample regime and in the finite regime.
arXiv Detail & Related papers (2022-10-03T06:09:01Z) - A Stochastic Newton Algorithm for Distributed Convex Optimization [62.20732134991661]
We analyze a Newton algorithm for homogeneous distributed convex optimization, where each machine can calculate gradients of the same population objective.
We show that our method can reduce the number, and frequency, of required communication rounds compared to existing methods without hurting performance.
arXiv Detail & Related papers (2021-10-07T17:51:10Z) - Estimating Gradients for Discrete Random Variables by Sampling without
Replacement [93.09326095997336]
We derive an unbiased estimator for expectations over discrete random variables based on sampling without replacement.
We show that our estimator can be derived as the Rao-Blackwellization of three different estimators.
arXiv Detail & Related papers (2020-02-14T14:15:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.