論文の概要: Deep Learning in Cardiology
- arxiv url: http://arxiv.org/abs/1902.11122v4
- Date: Mon, 13 Nov 2023 18:25:42 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-15 00:59:36.056944
- Title: Deep Learning in Cardiology
- Title(参考訳): 心臓科における深層学習
- Authors: Paschalis Bizopoulos and Dimitrios Koutsouris
- Abstract要約: 医療分野は、医師が解読し、効率的に使用できない大量のデータを作成している。
ディープラーニングは、幅広い医療問題において、より正確で効果的な技術として登場した。
ディープラーニング(Deep Learning)は、データを非線形に変換するレイヤで構成される表現学習手法である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The medical field is creating large amount of data that physicians are unable
to decipher and use efficiently. Moreover, rule-based expert systems are
inefficient in solving complicated medical tasks or for creating insights using
big data. Deep learning has emerged as a more accurate and effective technology
in a wide range of medical problems such as diagnosis, prediction and
intervention. Deep learning is a representation learning method that consists
of layers that transform the data non-linearly, thus, revealing hierarchical
relationships and structures. In this review we survey deep learning
application papers that use structured data, signal and imaging modalities from
cardiology. We discuss the advantages and limitations of applying deep learning
in cardiology that also apply in medicine in general, while proposing certain
directions as the most viable for clinical use.
- Abstract(参考訳): 医療分野は、医師が効率的に解読および使用できない大量のデータを作成している。
さらに、ルールベースのエキスパートシステムは、複雑な医療課題の解決やビッグデータによる洞察の創造に非効率である。
深層学習は、診断、予測、介入など幅広い医療問題において、より正確で効果的な技術として現れてきた。
ディープラーニングは、データを非線形に変換する層からなり、階層的関係と構造を明らかにする表現学習手法である。
本稿では, 構造化データ, 信号, 画像モダリティを用いた深層学習応用論文について検討する。
医学全般にも応用できる深層学習のメリットと限界について論じるとともに,臨床応用において最も有効な方法として,特定の方向を提案する。
関連論文リスト
- When Accuracy Meets Privacy: Two-Stage Federated Transfer Learning
Framework in Classification of Medical Images on Limited Data: A COVID-19
Case Study [77.34726150561087]
新型コロナウイルスのパンデミックが急速に広がり、世界の医療資源が不足している。
CNNは医療画像の解析に広く利用され、検証されている。
論文 参考訳(メタデータ) (2022-03-24T02:09:41Z) - Federated Cycling (FedCy): Semi-supervised Federated Learning of
Surgical Phases [57.90226879210227]
FedCyは、FLと自己教師付き学習を組み合わせた半教師付き学習(FSSL)手法で、ラベル付きビデオとラベルなしビデオの両方の分散データセットを利用する。
外科的段階の自動認識作業において,最先端のFSSL法よりも顕著な性能向上を示した。
論文 参考訳(メタデータ) (2022-03-14T17:44:53Z) - Demystifying Deep Learning Models for Retinal OCT Disease Classification
using Explainable AI [0.6117371161379209]
様々な深層学習技術の採用は、非常に一般的かつ効果的であり、網膜光コヒーレンス・トモグラフィー分野に実装する上でも同様に真実である。
これらの技術はブラックボックスの特徴を持ち、医療従事者がそれらの成果を完全に信頼できないようにする。
本稿では,この研究に説明可能なAIを導入したLimeの使用とともに,比較的小型で簡易な自己開発CNNモデルを提案する。
論文 参考訳(メタデータ) (2021-11-06T13:54:07Z) - Deep Learning Based Cardiac MRI Segmentation: Do We Need Experts? [12.36854197042851]
非専門的な基盤データに基づいてトレーニングされたセグメンテーションニューラルネットワークは、すべての実用目的に対して、専門家の基盤データと同様に優れたものであることを示す。
我々は、心臓データセットのアノテーションを効率的かつ安価に作成する機会を強調した。
論文 参考訳(メタデータ) (2021-07-23T20:10:58Z) - Graph-Based Deep Learning for Medical Diagnosis and Analysis: Past,
Present and Future [36.58189530598098]
医療データを分析するために、機械学習、特にディープラーニングメソッドをどのように活用するかを検討することが重要になっている。
既存のメソッドの大きな制限は、グリッドのようなデータにフォーカスすることです。
グラフニューラルネットワークは、生物学的システムに存在する暗黙の情報を利用することによって、大きな注目を集めている。
論文 参考訳(メタデータ) (2021-05-27T13:32:45Z) - Designing ECG Monitoring Healthcare System with Federated Transfer
Learning and Explainable AI [4.694126527114577]
我々は、ECGベースの医療アプリケーションのための連合環境で、新しい説明可能な人工知能(XAI)ベースのディープラーニングフレームワークを設計する。
提案したフレームワークは、MIT-BIH Arrhythmiaデータベースを使用してトレーニングされ、テストされた。
論文 参考訳(メタデータ) (2021-05-26T11:59:44Z) - Blending Knowledge in Deep Recurrent Networks for Adverse Event
Prediction at Hospital Discharge [15.174501264797309]
セルフアテンテンションに基づくリカレントニューラルネットワークによって計算された患者データの表現と臨床的に関連性のある機能とを融合させた学習アーキテクチャを導入する。
我々は,大規模なクレームデータセットについて広範な実験を行い,ブレンド手法が標準的な機械学習手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-04-09T14:07:45Z) - A Meta-embedding-based Ensemble Approach for ICD Coding Prediction [64.42386426730695]
国際疾病分類 (icd) は、世界中で臨床コーディングに使われているデファクトコードである。
これらのコードにより、医療提供者は償還を請求し、診断情報の効率的な保管と検索を容易にします。
提案手法は,日常的な医学データと科学論文の外部知識を用いて,効果的に単語ベクトルを訓練することにより,神経モデルの性能を高める。
論文 参考訳(メタデータ) (2021-02-26T17:49:58Z) - Domain Generalization for Medical Imaging Classification with
Linear-Dependency Regularization [59.5104563755095]
本稿では,医用画像分類分野におけるディープニューラルネットワークの一般化能力向上のための,シンプルだが効果的なアプローチを提案する。
医用画像の領域変数がある程度コンパクトであることに感銘を受けて,変分符号化による代表的特徴空間の学習を提案する。
論文 参考訳(メタデータ) (2020-09-27T12:30:30Z) - Uncovering the structure of clinical EEG signals with self-supervised
learning [64.4754948595556]
教師付き学習パラダイムは、しばしば利用可能なラベル付きデータの量によって制限される。
この現象は脳波(EEG)などの臨床関連データに特に問題となる。
ラベルのないデータから情報を抽出することで、ディープニューラルネットワークとの競合性能に到達することができるかもしれない。
論文 参考訳(メタデータ) (2020-07-31T14:34:47Z) - Opportunities and Challenges of Deep Learning Methods for
Electrocardiogram Data: A Systematic Review [62.490310870300746]
心電図(Electrocardiogram、ECG)は、医学および医療において最も一般的に用いられる診断ツールの1つである。
深層学習法は心電図信号を用いた予測医療タスクにおいて有望な結果を得た。
本稿では、モデリングとアプリケーションの観点から、ECGデータに対するディープラーニング手法の体系的なレビューを行う。
論文 参考訳(メタデータ) (2019-12-28T02:44:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。