論文の概要: Demystifying Deep Learning Models for Retinal OCT Disease Classification
using Explainable AI
- arxiv url: http://arxiv.org/abs/2111.03890v1
- Date: Sat, 6 Nov 2021 13:54:07 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-09 16:38:17.428799
- Title: Demystifying Deep Learning Models for Retinal OCT Disease Classification
using Explainable AI
- Title(参考訳): 説明可能なAIを用いた網膜OCT疾患分類のためのDemystifying Deep Learning Model
- Authors: Tasnim Sakib Apon, Mohammad Mahmudul Hasan, Abrar Islam, MD. Golam
Rabiul Alam
- Abstract要約: 様々な深層学習技術の採用は、非常に一般的かつ効果的であり、網膜光コヒーレンス・トモグラフィー分野に実装する上でも同様に真実である。
これらの技術はブラックボックスの特徴を持ち、医療従事者がそれらの成果を完全に信頼できないようにする。
本稿では,この研究に説明可能なAIを導入したLimeの使用とともに,比較的小型で簡易な自己開発CNNモデルを提案する。
- 参考スコア(独自算出の注目度): 0.6117371161379209
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the world of medical diagnostics, the adoption of various deep learning
techniques is quite common as well as effective, and its statement is equally
true when it comes to implementing it into the retina Optical Coherence
Tomography (OCT) sector, but (i)These techniques have the black box
characteristics that prevent the medical professionals to completely trust the
results generated from them (ii)Lack of precision of these methods restricts
their implementation in clinical and complex cases (iii)The existing works and
models on the OCT classification are substantially large and complicated and
they require a considerable amount of memory and computational power, reducing
the quality of classifiers in real-time applications. To meet these problems,
in this paper a self-developed CNN model has been proposed which is
comparatively smaller and simpler along with the use of Lime that introduces
Explainable AI to the study and helps to increase the interpretability of the
model. This addition will be an asset to the medical experts for getting major
and detailed information and will help them in making final decisions and will
also reduce the opacity and vulnerability of the conventional deep learning
models.
- Abstract(参考訳): 医学診断の世界では、様々な深層学習技術が採用されるのは非常に一般的であり、網膜光コヒーレンス・トモグラフィー(OCT)分野に導入する上でも同様に真実である。
(i)これらの技法は、医療従事者がその成果を完全に信頼できないブラックボックス特性を有する。
(II)これらの方法の精度の欠如は臨床および複雑な症例における実施を制限する
3) OCT分類の既存の作業やモデルはかなり複雑で,大量のメモリと計算能力を必要とするため,リアルタイムアプリケーションにおける分類器の品質が低下する。
これらの問題に対処するため,本論文では,Limeを用いて,説明可能なAIを導入し,モデルの解釈可能性を高めるとともに,比較的小型で簡易な自己開発CNNモデルを提案する。
この追加は、メジャーで詳細な情報を得るための医療専門家の資産であり、最終的な決定に役立ち、従来のディープラーニングモデルの不透明さと脆弱性を低減します。
関連論文リスト
- Analysis of Modern Computer Vision Models for Blood Cell Classification [49.1574468325115]
この研究では、MaxVit、EfficientVit、EfficientNet、EfficientNetV2、MobileNetV3といった最先端アーキテクチャを使用して、迅速かつ正確な結果を得る。
本手法は,従来の手法の速度と精度の懸念に対処するだけでなく,血液学的解析における革新的な深層学習モデルの適用性についても検討する。
論文 参考訳(メタデータ) (2024-06-30T16:49:29Z) - Structured Model Pruning for Efficient Inference in Computational Pathology [2.9687381456164004]
バイオメディカルイメージングにおいて広く使われているU-Netスタイルのアーキテクチャを解析する手法を開発した。
我々は,プルーニングが性能を低下させることなく,少なくとも70%圧縮できることを実証的に実証した。
論文 参考訳(メタデータ) (2024-04-12T22:05:01Z) - Beyond Multiple Instance Learning: Full Resolution All-In-Memory End-To-End Pathology Slide Modeling [1.063200750366449]
本稿では,タイルエンコーダとスライドアグリゲータを完全メモリで,エンド・ツー・エンドを高解像度で共同で学習する手法を提案する。
計算コストは高いが、詳細な定量的検証は、病理基盤モデルの大規模事前学習と微調整を約束することを示している。
論文 参考訳(メタデータ) (2024-03-07T19:28:58Z) - Less is more: Ensemble Learning for Retinal Disease Recognition Under
Limited Resources [12.119196313470887]
本稿では,限られた資源で網膜疾患を認識できる新しいアンサンブル学習機構を提案する。
このメカニズムは、複数の事前訓練されたモデルからの洞察を活用し、その知識を網膜CT画像に転送し適応させる。
論文 参考訳(メタデータ) (2024-02-15T06:58:25Z) - Explainable AI in Diagnosing and Anticipating Leukemia Using Transfer
Learning Method [0.0]
本研究は,小児および10代に流行する急性リンパ芽球性白血病(ALL)に焦点をあてる。
ディープラーニング技術を活用したコンピュータ支援診断(CAD)モデルを用いた自動検出手法を提案する。
提案手法は98.38%の精度を達成し、他の試験モデルよりも優れていた。
論文 参考訳(メタデータ) (2023-12-01T10:37:02Z) - Robust and Interpretable Medical Image Classifiers via Concept
Bottleneck Models [49.95603725998561]
本稿では,自然言語の概念を用いた堅牢で解釈可能な医用画像分類器を構築するための新しいパラダイムを提案する。
具体的には、まず臨床概念をGPT-4から検索し、次に視覚言語モデルを用いて潜在画像の特徴を明示的な概念に変換する。
論文 参考訳(メタデータ) (2023-10-04T21:57:09Z) - Benchmarking Heterogeneous Treatment Effect Models through the Lens of
Interpretability [82.29775890542967]
治療のパーソナライズされた効果を見積もるのは複雑だが、普及している問題である。
ヘテロジニアス処理効果推定に関する機械学習文献の最近の進歩は、洗練されたが不透明なツールの多くを生み出した。
我々は、ポストホックな特徴重要度法を用いて、モデルの予測に影響を及ぼす特徴を特定する。
論文 参考訳(メタデータ) (2022-06-16T17:59:05Z) - SSD-KD: A Self-supervised Diverse Knowledge Distillation Method for
Lightweight Skin Lesion Classification Using Dermoscopic Images [62.60956024215873]
皮膚がんは最も一般的な悪性腫瘍の1つであり、人口に影響を与え、世界中で経済的な重荷を負っている。
皮膚がん検出のほとんどの研究は、ポータブルデバイス上での計算資源の制限を考慮せずに、高い予測精度を追求している。
本研究は,皮膚疾患分類のための汎用的なKDフレームワークに多様な知識を統一する,SSD-KDと呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2022-03-22T06:54:29Z) - Incremental Cross-view Mutual Distillation for Self-supervised Medical
CT Synthesis [88.39466012709205]
本稿では,スライス間の分解能を高めるために,新しい医療スライスを構築した。
臨床実践において, 根本・中間医療スライスは常に欠落していることを考慮し, 相互蒸留の段階的相互蒸留戦略を導入する。
提案手法は,最先端のアルゴリズムよりも明確なマージンで優れる。
論文 参考訳(メタデータ) (2021-12-20T03:38:37Z) - Medulloblastoma Tumor Classification using Deep Transfer Learning with
Multi-Scale EfficientNets [63.62764375279861]
本稿では,エンド・ツー・エンドのMB腫瘍分類を提案し,様々な入力サイズとネットワーク次元の一致した移動学習を提案する。
161ケースのデータセットを用いて、より大規模な入力解像度を持つ事前学習されたEfficientNetが、大幅な性能改善をもたらすことを実証した。
論文 参考訳(メタデータ) (2021-09-10T13:07:11Z) - Learning Interpretable Microscopic Features of Tumor by Multi-task
Adversarial CNNs To Improve Generalization [1.7371375427784381]
既存のCNNモデルはブラックボックスとして機能し、医師が重要な診断機能がモデルによって使用されることを保証しない。
ここでは,マルチタスクと敵の損失を両立させる不確実性に基づく重み付けの組み合わせをエンド・ツー・エンドで学習することにより,病理的特徴に焦点を合わせることを推奨する。
AUC 0.89 (0.01) がベースラインであるAUC 0.86 (0.005) に対して最も高い値を示した。
論文 参考訳(メタデータ) (2020-08-04T12:10:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。