Deep Learning in Cardiology
- URL: http://arxiv.org/abs/1902.11122v5
- Date: Thu, 4 Apr 2024 11:34:52 GMT
- Title: Deep Learning in Cardiology
- Authors: Paschalis Bizopoulos, Dimitrios Koutsouris,
- Abstract summary: The medical field is creating large amount of data that physicians are unable to decipher and use efficiently.
Deep learning has emerged as a more accurate and effective technology in a wide range of medical problems.
Deep learning is a representation learning method that consists of layers that transform the data non-linearly.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The medical field is creating large amount of data that physicians are unable to decipher and use efficiently. Moreover, rule-based expert systems are inefficient in solving complicated medical tasks or for creating insights using big data. Deep learning has emerged as a more accurate and effective technology in a wide range of medical problems such as diagnosis, prediction and intervention. Deep learning is a representation learning method that consists of layers that transform the data non-linearly, thus, revealing hierarchical relationships and structures. In this review we survey deep learning application papers that use structured data, signal and imaging modalities from cardiology. We discuss the advantages and limitations of applying deep learning in cardiology that also apply in medicine in general, while proposing certain directions as the most viable for clinical use.
Related papers
- When Accuracy Meets Privacy: Two-Stage Federated Transfer Learning
Framework in Classification of Medical Images on Limited Data: A COVID-19
Case Study [77.34726150561087]
COVID-19 pandemic has spread rapidly and caused a shortage of global medical resources.
CNN has been widely utilized and verified in analyzing medical images.
arXiv Detail & Related papers (2022-03-24T02:09:41Z) - Federated Cycling (FedCy): Semi-supervised Federated Learning of
Surgical Phases [57.90226879210227]
FedCy is a semi-supervised learning (FSSL) method that combines FL and self-supervised learning to exploit a decentralized dataset of both labeled and unlabeled videos.
We demonstrate significant performance gains over state-of-the-art FSSL methods on the task of automatic recognition of surgical phases.
arXiv Detail & Related papers (2022-03-14T17:44:53Z) - Demystifying Deep Learning Models for Retinal OCT Disease Classification
using Explainable AI [0.6117371161379209]
The adoption of various deep learning techniques is quite common as well as effective, and its statement is equally true when it comes to implementing it into the retina Optical Coherence Tomography sector.
These techniques have the black box characteristics that prevent the medical professionals to completely trust the results generated from them.
This paper proposes a self-developed CNN model which is comparatively smaller and simpler along with the use of Lime that introduces Explainable AI to the study.
arXiv Detail & Related papers (2021-11-06T13:54:07Z) - Deep Learning Based Cardiac MRI Segmentation: Do We Need Experts? [12.36854197042851]
We show that a segmentation neural network trained on non-expert groundtruth data is, to all practical purposes, as good as on expert groundtruth data.
We highlight an opportunity for the efficient and cheap creation of annotations for cardiac datasets.
arXiv Detail & Related papers (2021-07-23T20:10:58Z) - Graph-Based Deep Learning for Medical Diagnosis and Analysis: Past,
Present and Future [36.58189530598098]
It has become critical to explore how machine learning and specifically deep learning methods can be exploited to analyse healthcare data.
A major limitation of existing methods has been the focus on grid-like data.
graph neural networks have attracted significant attention by exploiting implicit information that resides in a biological system.
arXiv Detail & Related papers (2021-05-27T13:32:45Z) - Designing ECG Monitoring Healthcare System with Federated Transfer
Learning and Explainable AI [4.694126527114577]
We design a new explainable artificial intelligence (XAI) based deep learning framework in a federated setting for ECG-based healthcare applications.
The proposed framework was trained and tested using the MIT-BIH Arrhythmia database.
arXiv Detail & Related papers (2021-05-26T11:59:44Z) - Blending Knowledge in Deep Recurrent Networks for Adverse Event
Prediction at Hospital Discharge [15.174501264797309]
We introduce a learning architecture that fuses a representation of patient data computed by a self-attention based recurrent neural network, with clinically relevant features.
We conduct extensive experiments on a large claims dataset and show that the blended method outperforms the standard machine learning approaches.
arXiv Detail & Related papers (2021-04-09T14:07:45Z) - A Meta-embedding-based Ensemble Approach for ICD Coding Prediction [64.42386426730695]
International Classification of Diseases (ICD) are the de facto codes used globally for clinical coding.
These codes enable healthcare providers to claim reimbursement and facilitate efficient storage and retrieval of diagnostic information.
Our proposed approach enhances the performance of neural models by effectively training word vectors using routine medical data as well as external knowledge from scientific articles.
arXiv Detail & Related papers (2021-02-26T17:49:58Z) - Domain Generalization for Medical Imaging Classification with
Linear-Dependency Regularization [59.5104563755095]
We introduce a simple but effective approach to improve the generalization capability of deep neural networks in the field of medical imaging classification.
Motivated by the observation that the domain variability of the medical images is to some extent compact, we propose to learn a representative feature space through variational encoding.
arXiv Detail & Related papers (2020-09-27T12:30:30Z) - Uncovering the structure of clinical EEG signals with self-supervised
learning [64.4754948595556]
Supervised learning paradigms are often limited by the amount of labeled data that is available.
This phenomenon is particularly problematic in clinically-relevant data, such as electroencephalography (EEG)
By extracting information from unlabeled data, it might be possible to reach competitive performance with deep neural networks.
arXiv Detail & Related papers (2020-07-31T14:34:47Z) - Opportunities and Challenges of Deep Learning Methods for
Electrocardiogram Data: A Systematic Review [62.490310870300746]
The electrocardiogram (ECG) is one of the most commonly used diagnostic tools in medicine and healthcare.
Deep learning methods have achieved promising results on predictive healthcare tasks using ECG signals.
This paper presents a systematic review of deep learning methods for ECG data from both modeling and application perspectives.
arXiv Detail & Related papers (2019-12-28T02:44:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.