論文の概要: Robust superpixels using color and contour features along linear path
- arxiv url: http://arxiv.org/abs/1903.07193v2
- Date: Wed, 24 Sep 2025 12:35:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-25 20:53:19.414627
- Title: Robust superpixels using color and contour features along linear path
- Title(参考訳): 線形経路に沿った色と輪郭特徴を用いたロバストスーパーピクセル
- Authors: Rémi Giraud, Vinh-Thong Ta, Nicolas Papadakis,
- Abstract要約: リニアパス(SCALP)を用いた輪郭アヒーレンス付き高精度で正規なスーパーピクセルを提供するフレームワークを提案する。
また、画素をスーパーピクセルに関連付ける際に、画像境界の交差を防止するために、輪郭前も使用される。
SCALPは、標準セグメンテーションデータセット上で広範囲に評価され、得られた結果は最先端の手法よりも優れている。
- 参考スコア(独自算出の注目度): 5.746869663956391
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Superpixel decomposition methods are widely used in computer vision and image processing applications. By grouping homogeneous pixels, the accuracy can be increased and the decrease of the number of elements to process can drastically reduce the computational burden. For most superpixel methods, a trade-off is computed between 1) color homogeneity, 2) adherence to the image contours and 3) shape regularity of the decomposition. In this paper, we propose a framework that jointly enforces all these aspects and provides accurate and regular Superpixels with Contour Adherence using Linear Path (SCALP). During the decomposition, we propose to consider color features along the linear path between the pixel and the corresponding superpixel barycenter. A contour prior is also used to prevent the crossing of image boundaries when associating a pixel to a superpixel. Finally, in order to improve the decomposition accuracy and the robustness to noise, we propose to integrate the pixel neighborhood information, while preserving the same computational complexity. SCALP is extensively evaluated on standard segmentation dataset, and the obtained results outperform the ones of the state-of-the-art methods. SCALP is also extended for supervoxel decomposition on MRI images.
- Abstract(参考訳): スーパーピクセル分解法はコンピュータビジョンや画像処理に広く用いられている。
均一画素をグループ化することにより、精度が向上し、処理する要素の数が大幅に減少し、計算負担が大幅に軽減される。
ほとんどのスーパーピクセル法では、トレードオフは計算される
1)色均質性。
2 画像輪郭の遵守及び
3)分解の形状規則性。
本稿では,これらすべての側面を共同で実施し,線形パス(SCALP)を用いたコントラルアヒーレンス(Contour Adherence)を用いた高精度かつ正規のスーパーピクセルを提供するフレームワークを提案する。
本研究は,分解過程において,画素と対応するスーパーピクセルバリセンタとの間の線形経路に沿った色特徴について考察する。
また、画素をスーパーピクセルに関連付ける際に、画像境界の交差を防止するために、輪郭前も使用される。
最後に,分解精度と雑音に対する頑健性を改善するため,同じ計算複雑性を保ちながら画素近傍情報を統合することを提案する。
SCALPは、標準セグメンテーションデータセット上で広範囲に評価され、得られた結果は最先端の手法よりも優れている。
SCALPはMRI画像のスーパーボクセル分解にも拡張されている。
関連論文リスト
- Video Frame Interpolation with Many-to-many Splatting and Spatial
Selective Refinement [83.60486465697318]
本稿では,フレームを効率的に補間するM2Mスプレイティングフレームワークを提案する。
入力フレームペアごとに、M2Mは任意の数のフレーム間を補間する際の計算オーバーヘッドが極小である。
フレキシブルな空間選択リファインメント(Spatial Selective Refinement)コンポーネントを導入して,M2M++フレームワークを拡張した。
論文 参考訳(メタデータ) (2023-10-29T09:09:32Z) - Pixel-Inconsistency Modeling for Image Manipulation Localization [59.968362815126326]
デジタル画像法医学は、画像認証と操作のローカライゼーションにおいて重要な役割を果たす。
本稿では,画素不整合アーチファクトの解析を通じて,一般化されたロバストな操作ローカライゼーションモデルを提案する。
実験により,本手法は固有の画素不整合偽指紋を抽出することに成功した。
論文 参考訳(メタデータ) (2023-09-30T02:54:51Z) - Unsupervised Superpixel Generation using Edge-Sparse Embedding [18.92698251515116]
特徴に対する画素の類似性に基づいて画像をスーパーピクセルに分割することは、データの複雑さを著しく減らし、その後の画像処理タスクを改善する。
コントラストの少ない非畳み込み画像デコーダを提案し、再構成画像にスムーズで接続されたエッジを強制する。
我々はデコーダの最後に隠された層から、余分な空間情報をスムーズなアクティベーションマップに符号化してエッジスパース画素埋め込みを生成し、標準クラスタリングアルゴリズムを用いて高品質なスーパーピクセルを抽出する。
論文 参考訳(メタデータ) (2022-11-28T15:55:05Z) - Decoupled-and-Coupled Networks: Self-Supervised Hyperspectral Image
Super-Resolution with Subpixel Fusion [67.35540259040806]
サブピクセルレベルのHS超解像フレームワークを提案する。
名前が示すように、DC-Netはまず入力を共通(またはクロスセンサー)とセンサー固有のコンポーネントに分離する。
我々は,CSUネットの裏側に自己教師付き学習モジュールを付加し,素材の整合性を保証し,復元されたHS製品の詳細な外観を向上する。
論文 参考訳(メタデータ) (2022-05-07T23:40:36Z) - Saliency Enhancement using Superpixel Similarity [77.34726150561087]
Saliency Object Detection (SOD) は画像解析にいくつかの応用がある。
深層学習に基づくSOD法は最も効果的であるが、類似した色を持つ前景の部品を見逃すことがある。
スーパーピクセル類似性(SESS)に対するtextitSaliency Enhancement というポストプロセッシング手法を導入する。
我々は,SESSが5つの画像データセット上での3つのディープラーニングに基づくSOD手法の結果を連続的に,かつ著しく改善できることを実証した。
論文 参考訳(メタデータ) (2021-12-01T17:22:54Z) - Implicit Integration of Superpixel Segmentation into Fully Convolutional
Networks [11.696069523681178]
スーパーピクセル方式をCNNに暗黙的に統合する方法を提案する。
提案手法では,下地層に画素を階層的にグループ化し,スーパーピクセルを生成する。
本手法は,セマンティックセグメンテーション,スーパーピクセルセグメンテーション,モノクル深度推定などのタスクで評価する。
論文 参考訳(メタデータ) (2021-03-05T02:20:26Z) - AINet: Association Implantation for Superpixel Segmentation [82.21559299694555]
今回提案する新しいtextbfAssociation textbfImplantation(AI)モジュールは、ネットワークがピクセルとその周辺グリッド間の関係を明示的にキャプチャすることを可能にする。
本手法は最先端性能を実現するだけでなく,十分な推論効率を維持することができた。
論文 参考訳(メタデータ) (2021-01-26T10:40:13Z) - Superpixel Segmentation Based on Spatially Constrained Subspace
Clustering [57.76302397774641]
独立意味情報を持つ各代表領域を部分空間とみなし,部分空間クラスタリング問題としてスーパーピクセルセグメンテーションを定式化する。
従来のサブスペースクラスタリングとスーパーピクセルセグメンテーションの簡単な統合は,画素の空間相関のために効果的に機能しないことを示す。
本稿では,空間隣接画素に類似の属性を付加してスーパーピクセルにクラスタリング可能な,凸局所性制約付きサブスペースクラスタリングモデルを提案する。
論文 参考訳(メタデータ) (2020-12-11T06:18:36Z) - SCALP: Superpixels with Contour Adherence using Linear Path [5.746869663956391]
本稿では,反復クラスタリングフレームワークにおける線形パス (SCALP) を用いたコントラルアジェンスを用いたスーパーピクセルの高速計算法を提案する。
提案したフレームワークは、輪郭の輪郭に固執するコンパクトでスーパーピクセルを生成する。
論文 参考訳(メタデータ) (2019-03-17T19:23:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。