論文の概要: Implicit Integration of Superpixel Segmentation into Fully Convolutional
Networks
- arxiv url: http://arxiv.org/abs/2103.03435v2
- Date: Mon, 8 May 2023 07:40:03 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-10 01:41:42.490548
- Title: Implicit Integration of Superpixel Segmentation into Fully Convolutional
Networks
- Title(参考訳): 完全畳み込みネットワークへのスーパーピクセルセグメンテーションの暗黙的統合
- Authors: Teppei Suzuki
- Abstract要約: スーパーピクセル方式をCNNに暗黙的に統合する方法を提案する。
提案手法では,下地層に画素を階層的にグループ化し,スーパーピクセルを生成する。
本手法は,セマンティックセグメンテーション,スーパーピクセルセグメンテーション,モノクル深度推定などのタスクで評価する。
- 参考スコア(独自算出の注目度): 11.696069523681178
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Superpixels are a useful representation to reduce the complexity of image
data. However, to combine superpixels with convolutional neural networks (CNNs)
in an end-to-end fashion, one requires extra models to generate superpixels and
special operations such as graph convolution. In this paper, we propose a way
to implicitly integrate a superpixel scheme into CNNs, which makes it easy to
use superpixels with CNNs in an end-to-end fashion. Our proposed method
hierarchically groups pixels at downsampling layers and generates superpixels.
Our method can be plugged into many existing architectures without a change in
their feed-forward path because our method does not use superpixels in the
feed-forward path but use them to recover the lost resolution instead of
bilinear upsampling. As a result, our method preserves detailed information
such as object boundaries in the form of superpixels even when the model
contains downsampling layers. We evaluate our method on several tasks such as
semantic segmentation, superpixel segmentation, and monocular depth estimation,
and confirm that it speeds up modern architectures and/or improves their
prediction accuracy in these tasks.
- Abstract(参考訳): スーパーピクセルは画像データの複雑さを減らすのに有用な表現である。
しかし、スーパーピクセルと畳み込みニューラルネットワーク(CNN)をエンドツーエンドで組み合わせるためには、スーパーピクセルを生成するための余分なモデルとグラフ畳み込みのような特別な操作が必要である。
本稿では,スーパーピクセル方式をCNNに暗黙的に統合する手法を提案する。
提案手法は,ダウンサンプリング層で画素を階層的にグループ化し,スーパーピクセルを生成する。
提案手法は,フィードフォワードパスにスーパーピクセルを使用せず,バイリニアアップサンプリングではなく,消失した解像度を復元するために使用するため,フィードフォワードパスを変更することなく既存の多くのアーキテクチャに接続することができる。
その結果,モデルにダウンサンプリング層が存在する場合でも,オブジェクト境界などの詳細な情報をスーパーピクセル形式で保存する。
提案手法は,セマンティックセグメンテーション,スーパーピクセルセグメンテーション,モノクル深度推定などのタスクで評価し,現代のアーキテクチャを高速化し,それらのタスクにおける予測精度を向上させる。
関連論文リスト
- Superpixel Transformers for Efficient Semantic Segmentation [32.537400525407186]
本稿では,画像の過剰部分化というスーパーピクセルの考え方を活用し,近代的なトランスフォーマーフレームワークでそれらを適用することによって,その解決策を提案する。
提案手法は,グローバルな自己認識機構によって生成されるリッチなスーパーピクセル特徴により,セマンティックセマンティックセグメンテーションにおける最先端性能を実現する。
論文 参考訳(メタデータ) (2023-09-28T23:09:30Z) - Unsupervised Superpixel Generation using Edge-Sparse Embedding [18.92698251515116]
特徴に対する画素の類似性に基づいて画像をスーパーピクセルに分割することは、データの複雑さを著しく減らし、その後の画像処理タスクを改善する。
コントラストの少ない非畳み込み画像デコーダを提案し、再構成画像にスムーズで接続されたエッジを強制する。
我々はデコーダの最後に隠された層から、余分な空間情報をスムーズなアクティベーションマップに符号化してエッジスパース画素埋め込みを生成し、標準クラスタリングアルゴリズムを用いて高品質なスーパーピクセルを抽出する。
論文 参考訳(メタデータ) (2022-11-28T15:55:05Z) - Efficient Multiscale Object-based Superpixel Framework [62.48475585798724]
我々は,SICLE(Iterative CLEarcutting)によるスーパーピクセルという,新しいスーパーピクセルフレームワークを提案する。
SICLEは、複数スケールのセグメンテーションをオンザフライで生成できるオブジェクト情報を利用する。
これは最近のスーパーピクセル法を一般化し、複数のデライン化指標に従って効率と効率性に関する最先端のアプローチを超越している。
論文 参考訳(メタデータ) (2022-04-07T15:59:38Z) - Saliency Enhancement using Superpixel Similarity [77.34726150561087]
Saliency Object Detection (SOD) は画像解析にいくつかの応用がある。
深層学習に基づくSOD法は最も効果的であるが、類似した色を持つ前景の部品を見逃すことがある。
スーパーピクセル類似性(SESS)に対するtextitSaliency Enhancement というポストプロセッシング手法を導入する。
我々は,SESSが5つの画像データセット上での3つのディープラーニングに基づくSOD手法の結果を連続的に,かつ著しく改善できることを実証した。
論文 参考訳(メタデータ) (2021-12-01T17:22:54Z) - Small Lesion Segmentation in Brain MRIs with Subpixel Embedding [105.1223735549524]
ヒト脳のMRIスキャンを虚血性脳梗塞と正常組織に分割する方法を提案する。
本稿では,空間展開埋め込みネットワークによって予測を導出する標準エンコーダデコーダの形式でニューラルネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2021-09-18T00:21:17Z) - Generating Superpixels for High-resolution Images with Decoupled Patch
Calibration [82.21559299694555]
Patch Networks (PCNet) は高解像度のスーパーピクセルセグメンテーションを効率的かつ正確に実装するように設計されている。
DPCは高解像度画像から局所パッチを取得し、動的にバイナリマスクを生成し、ネットワークを領域境界に集中させる。
特に、DPCは高解像度画像からローカルパッチを取り、動的にバイナリマスクを生成して、ネットワークを領域境界に集中させる。
論文 参考訳(メタデータ) (2021-08-19T10:33:05Z) - HERS Superpixels: Deep Affinity Learning for Hierarchical Entropy Rate
Segmentation [0.0]
スーパーピクセルセグメンテーションのための2段階グラフベースのフレームワークを提案する。
最初の段階では,ペアワイズ画素親和性を学習するディープ親和性学習ネットワークを導入する。
第2段階では階層エントロピーレート(HERS)と呼ばれる高効率スーパーピクセル法を提案する。
論文 参考訳(メタデータ) (2021-06-07T16:20:04Z) - AINet: Association Implantation for Superpixel Segmentation [82.21559299694555]
今回提案する新しいtextbfAssociation textbfImplantation(AI)モジュールは、ネットワークがピクセルとその周辺グリッド間の関係を明示的にキャプチャすることを可能にする。
本手法は最先端性能を実現するだけでなく,十分な推論効率を維持することができた。
論文 参考訳(メタデータ) (2021-01-26T10:40:13Z) - Superpixel Segmentation Based on Spatially Constrained Subspace
Clustering [57.76302397774641]
独立意味情報を持つ各代表領域を部分空間とみなし,部分空間クラスタリング問題としてスーパーピクセルセグメンテーションを定式化する。
従来のサブスペースクラスタリングとスーパーピクセルセグメンテーションの簡単な統合は,画素の空間相関のために効果的に機能しないことを示す。
本稿では,空間隣接画素に類似の属性を付加してスーパーピクセルにクラスタリング可能な,凸局所性制約付きサブスペースクラスタリングモデルを提案する。
論文 参考訳(メタデータ) (2020-12-11T06:18:36Z) - Superpixel Segmentation with Fully Convolutional Networks [32.878045921919714]
本稿では,通常の画像グリッド上でのスーパーピクセルの予測に完全畳み込みネットワークを用いる新しい手法を提案する。
ベンチマーク・データセットによる実験結果から,提案手法は最先端のスーパーピクセル・セグメンテーション性能を実現することが示された。
ステレオマッチングのための人気のあるネットワークアーキテクチャを改良し、スーパーピクセルと格差を同時に予測する。
論文 参考訳(メタデータ) (2020-03-29T02:42:07Z) - Superpixel Segmentation via Convolutional Neural Networks with
Regularized Information Maximization [11.696069523681178]
ランダムd畳み込みニューラルネットワーク(CNN)を推論時間で最適化し,教師なしのスーパーピクセルセグメンテーション手法を提案する。
提案手法は,スーパーピクセルセグメンテーションの目的関数を最小化することにより,ラベルのない単一画像からCNNを介してスーパーピクセルを生成する。
論文 参考訳(メタデータ) (2020-02-17T04:32:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。