Energy bounds for entangled states
- URL: http://arxiv.org/abs/1904.02778v2
- Date: Mon, 11 Sep 2023 14:43:30 GMT
- Title: Energy bounds for entangled states
- Authors: Nicol\`o Piccione, Benedetto Militello, Anna Napoli, Bruno Bellomo
- Abstract summary: We numerically study the probability of randomly generating pure states close to these energy bounds finding.
These results can be important in quantum technologies to design energetically more efficient protocols.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We find the minimum and the maximum value for the local energy of an
arbitrary finite bipartite system for any given amount of entanglement, also
identifying families of states reaching these bounds and sharing formal
analogies with thermal states. Then, we numerically study the probability of
randomly generating pure states close to these energy bounds finding, in all
the considered configurations, that it is extremely low except for the
two-qubit and highly degenerate cases. These results can be important in
quantum technologies to design energetically more efficient protocols.
Related papers
- Engineering of Hyperentangled Complex Quantum Networks [2.72027416356867]
We propose a new and feasible scheme to engineer the atomic hyperentangled cluster and ring graph states invoking cavity QED technique.
These states are engineered using both external quantized momenta states and energy levels of neutral atoms under off-resonant and resonant Atomic Bragg Diffraction technique.
arXiv Detail & Related papers (2024-08-29T09:58:03Z) - Optimal quantum state tomography with local informationally complete measurements [25.33379738135298]
We study whether a general MPS/MPDO state can be recovered with bounded errors using only a number of state copies in the number of qubits.
We provide a positive answer for a variety of common many-body quantum states, including typical short-range entangled states, random MPS/MPDO states, and thermal states of one-dimensional Hamiltonians.
arXiv Detail & Related papers (2024-08-13T17:58:02Z) - Local Purity Distillation in Quantum Systems: Exploring the Complementarity Between Purity and Entanglement [41.94295877935867]
We introduce and develop the framework of Gibbs-preserving local operations and classical communication.
We focus on systems with fully degenerate local Hamiltonians, where local cooling aligns with the extraction of local purity.
Our findings open doors to various practical applications, including techniques for entanglement detection and estimation.
arXiv Detail & Related papers (2023-11-20T14:58:31Z) - Multipartite entanglement theory with entanglement-nonincreasing
operations [91.3755431537592]
We extend the resource theory of entanglement for multipartite systems beyond the standard framework of local operations and classical communication.
We demonstrate that in this adjusted framework, the transformation rates between multipartite states are fundamentally dictated by the bipartite entanglement entropies of the respective quantum states.
arXiv Detail & Related papers (2023-05-30T12:53:56Z) - Sparse random Hamiltonians are quantumly easy [105.6788971265845]
A candidate application for quantum computers is to simulate the low-temperature properties of quantum systems.
This paper shows that, for most random Hamiltonians, the maximally mixed state is a sufficiently good trial state.
Phase estimation efficiently prepares states with energy arbitrarily close to the ground energy.
arXiv Detail & Related papers (2023-02-07T10:57:36Z) - The optimal approximation of qubit states with limited quantum states [0.7221806038989489]
We analytically solve the optimal scheme to find out the closest distance between the objective qubit state and all the possible states convexly mixed by some limited states.
We find the least number of states within a given set to optimally construct the objective state and also find that any state can be optimally established by at most four quantum states of the set.
arXiv Detail & Related papers (2022-03-15T12:01:41Z) - Probing infinite many-body quantum systems with finite-size quantum
simulators [0.0]
We propose a protocol that makes optimal use of a given finite-size simulator by directly preparing, on its bulk region, a mixed state.
For systems of free fermions in one and two spatial dimensions, we illustrate and explain the underlying physics.
For the example of a non-integrable extended Su-Schrieffer-Heeger model, we demonstrate that our protocol enables a more accurate study of QPTs.
arXiv Detail & Related papers (2021-08-27T16:27:46Z) - Heterogeneous Multipartite Entanglement Purification for
Size-Constrained Quantum Devices [68.8204255655161]
Purifying entanglement resources after their imperfect generation is an indispensable step towards using them in quantum architectures.
Here we depart from the typical purification paradigm for multipartite states explored in the last twenty years.
We find that smaller sacrificial' states, like Bell pairs, can be more useful in the purification of multipartite states than additional copies of these same states.
arXiv Detail & Related papers (2020-11-23T19:00:00Z) - Generation of minimum energy entangled states [0.0]
Quantum technologies exploiting bipartite entanglement could be made more efficient by using states having the minimum amount of energy for a given entanglement degree.
Here, we study how to generate these states in the case of a bipartite system of arbitrary finite dimension.
We numerically show that, for each degree of entanglement, generating minimum-energy entangled states costs, in general, less than generating the vast majority of the other states.
arXiv Detail & Related papers (2020-10-26T15:01:08Z) - Gaussian Process States: A data-driven representation of quantum
many-body physics [59.7232780552418]
We present a novel, non-parametric form for compactly representing entangled many-body quantum states.
The state is found to be highly compact, systematically improvable and efficient to sample.
It is also proven to be a universal approximator' for quantum states, able to capture any entangled many-body state with increasing data set size.
arXiv Detail & Related papers (2020-02-27T15:54:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.