Engineering of Hyperentangled Complex Quantum Networks
- URL: http://arxiv.org/abs/2408.16397v1
- Date: Thu, 29 Aug 2024 09:58:03 GMT
- Title: Engineering of Hyperentangled Complex Quantum Networks
- Authors: Murad Ahmad, Liaqat Ali, Muhammad Imran, Rameez-ul-Islam, Manzoor Ikram, Rafi Ud Din, Ashfaq Ahmad, Iftikhar Ahmad,
- Abstract summary: We propose a new and feasible scheme to engineer the atomic hyperentangled cluster and ring graph states invoking cavity QED technique.
These states are engineered using both external quantized momenta states and energy levels of neutral atoms under off-resonant and resonant Atomic Bragg Diffraction technique.
- Score: 2.72027416356867
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Hyperentangled states are highly efficient and resource economical. This is because they enhance the quantum information encoding capabilities due to the correlated engagement of more than one degree of freedom of the same quantum entity while keeping the physical resources at their minimum. Therefore, initially the photonic hyperentangled states have been explored extensively but the generation and respective manipulation of the atomic counterpart states are still limited to only few proposals. In this work, we propose a new and feasible scheme to engineer the atomic hyperentangled cluster and ring graph states invoking cavity QED technique for applicative relevance to quantum biology and quantum communications utilizing the complex quantum networks. These states are engineered using both external quantized momenta states and energy levels of neutral atoms under off-resonant and resonant Atomic Bragg Diffraction (ABD) technique. The study of dynamical capacity and potential efficiency have certainly enhanced the range of usefulness of these states. In order to assess the operational behavior of such states when subjected to a realistic noise environment has also been simulated, demonstrating long enough sustainability of the proposed states. Moreover, experimental feasibility of the proposed scheme has also been elucidated under the prevailing cavity-QED research scenario.
Related papers
- Path-entangled radiation from kinetic inductance amplifier [0.0]
We introduce a kinetic inductance quantum-limited amplifier that generates stationary path-entangled microwave radiation.
This work highlights the potential of kinetic inductance parametric amplifiers for practical applications such as quantum teleportation, distributed quantum computing, and enhanced quantum sensing.
arXiv Detail & Related papers (2024-06-19T06:00:43Z) - Mixed-Dimensional Qudit State Preparation Using Edge-Weighted Decision Diagrams [3.393749500700096]
Quantum computers have the potential to solve intractable problems.
One key element to exploiting this potential is the capability to efficiently prepare quantum states for multi-valued, or qudit, systems.
In this paper, we investigate quantum state preparation with a focus on mixed-dimensional systems.
arXiv Detail & Related papers (2024-06-05T18:00:01Z) - Robustness of the projected squeezed state protocol [0.0]
Projected squeezed (PS) states are multipartite entangled states generated by unitary spin squeezing.
We simulate the generation of PS states in non-ideal experimental conditions with relevant decoherence channels.
Our findings highlight PS states as useful metrological resources, demonstrating a robustness against environmental effects with increasing qubit number N.
arXiv Detail & Related papers (2023-10-18T13:21:44Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Neural-network quantum states for ultra-cold Fermi gases [49.725105678823915]
This work introduces a novel Pfaffian-Jastrow neural-network quantum state that includes backflow transformation based on message-passing architecture.
We observe the emergence of strong pairing correlations through the opposite-spin pair distribution functions.
Our findings suggest that neural-network quantum states provide a promising strategy for studying ultra-cold Fermi gases.
arXiv Detail & Related papers (2023-05-15T17:46:09Z) - Sparse random Hamiltonians are quantumly easy [105.6788971265845]
A candidate application for quantum computers is to simulate the low-temperature properties of quantum systems.
This paper shows that, for most random Hamiltonians, the maximally mixed state is a sufficiently good trial state.
Phase estimation efficiently prepares states with energy arbitrarily close to the ground energy.
arXiv Detail & Related papers (2023-02-07T10:57:36Z) - The power of noisy quantum states and the advantage of resource dilution [62.997667081978825]
Entanglement distillation allows to convert noisy quantum states into singlets.
We show that entanglement dilution can increase the resilience of shared quantum states to local noise.
arXiv Detail & Related papers (2022-10-25T17:39:29Z) - Quantum Davidson Algorithm for Excited States [42.666709382892265]
We introduce the quantum Krylov subspace (QKS) method to address both ground and excited states.
By using the residues of eigenstates to expand the Krylov subspace, we formulate a compact subspace that aligns closely with the exact solutions.
Using quantum simulators, we employ the novel QDavidson algorithm to delve into the excited state properties of various systems.
arXiv Detail & Related papers (2022-04-22T15:03:03Z) - Two-mode Phonon Squeezing in Bose-Einstein Condensates for Gravitational
Wave Detection [0.0]
The aim of this thesis is to find whether the recently described effect of an oscillating external potential on a uniform BEC can be exploited to generate two-mode squeezed phonon states.
The considered mechanism could find applications not only in the gravitational wave detector that originally motivated this work, but more generally in the field of quantum metrology based on ultracold atoms.
arXiv Detail & Related papers (2021-01-12T13:01:10Z) - Bose-Einstein condensate soliton qubit states for metrological
applications [58.720142291102135]
We propose novel quantum metrology applications with two soliton qubit states.
Phase space analysis, in terms of population imbalance - phase difference variables, is also performed to demonstrate macroscopic quantum self-trapping regimes.
arXiv Detail & Related papers (2020-11-26T09:05:06Z) - Preparation of a superposition of squeezed coherent states of a cavity
field via coupling to a superconducting charge qubit [0.0]
We will discuss the issue of the generation of nonclassical states in the context of a superconducting qubit in a microcavity.
The key ingredients to engineer these quantum states are a tunable gate voltage and a classical magnetic field applied to SQUID.
arXiv Detail & Related papers (2020-03-20T18:06:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.