論文の概要: Predicting human decisions with behavioral theories and machine learning
- arxiv url: http://arxiv.org/abs/1904.06866v3
- Date: Fri, 28 Mar 2025 09:01:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-03 15:43:07.028606
- Title: Predicting human decisions with behavioral theories and machine learning
- Title(参考訳): 行動理論と機械学習による人間の意思決定予測
- Authors: Ori Plonsky, Reut Apel, Eyal Ert, Moshe Tennenholtz, David Bourgin, Joshua C. Peterson, Daniel Reichman, Thomas L. Griffiths, Stuart J. Russell, Evan C. Carter, James F. Cavanagh, Ido Erev,
- Abstract要約: 本稿では,行動理論(BEAST)と機械学習を統合したハイブリッドモデルであるBEAST Gradient Boosting(BEAST-GB)を紹介する。
BEAST-GBは、膨大なデータと数十の既存の行動モデルに基づいてトレーニングされたニューラルネットワークよりも正確に予測する。
我々の結果は、機械学習を理論的フレームワーク、特に予測のために設計されたBEASTと統合することで、人間の振る舞いを予測し理解する能力が向上することを示す。
- 参考スコア(独自算出の注目度): 13.000185375686325
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Predicting human decisions under risk and uncertainty remains a fundamental challenge across disciplines. Existing models often struggle even in highly stylized tasks like choice between lotteries. We introduce BEAST Gradient Boosting (BEAST-GB), a hybrid model integrating behavioral theory (BEAST) with machine learning. We first present CPC18, a competition for predicting risky choice, in which BEAST-GB won. Then, using two large datasets, we demonstrate BEAST-GB predicts more accurately than neural networks trained on extensive data and dozens of existing behavioral models. BEAST-GB also generalizes robustly across unseen experimental contexts, surpassing direct empirical generalization, and helps refine and improve the behavioral theory itself. Our analyses highlight the potential of anchoring predictions on behavioral theory even in data-rich settings and even when the theory alone falters. Our results underscore how integrating machine learning with theoretical frameworks, especially those-like BEAST-designed for prediction, can improve our ability to predict and understand human behavior.
- Abstract(参考訳): リスクと不確実性の下で人間の決定を予測することは、規律にまたがる根本的な課題である。
既存のモデルは、宝くじの選択のような高度にスタイル化されたタスクでも苦労することが多い。
本稿では,行動理論(BEAST)と機械学習を統合したハイブリッドモデルであるBEAST Gradient Boosting(BEAST-GB)を紹介する。
最初に、BEAST-GBが勝利したリスク選択を予測するコンペティションであるCPC18を提示する。
次に、2つの大きなデータセットを使用して、BEAST-GBが、膨大なデータと数十の既存の行動モデルに基づいてトレーニングされたニューラルネットワークよりも正確に予測できることを実証する。
BEAST-GBは、直接的な経験的一般化を超え、行動理論自体を洗練・改善するのに役立つ。
分析では、データ豊富な設定でも、理論だけでも、行動理論を定着させる可能性を強調した。
我々の結果は、機械学習を理論的フレームワーク、特に予測のために設計されたBEASTと統合することで、人間の振る舞いを予測し理解する能力が向上することを示す。
関連論文リスト
- Contextual Online Uncertainty-Aware Preference Learning for Human Feedback [13.478503755314344]
RLHF(Reinforcement Learning from Human Feedback)は人工知能において重要なパラダイムとなっている。
最適モデルに基づくオンライン意思決定と統計的推測を同時に行うための新しい統計的枠組みを提案する。
本稿では,大規模マルチタスク言語理解データセット上での大規模言語モデルのランク付けのための人間の嗜好データ分析に,提案手法を適用した。
論文 参考訳(メタデータ) (2025-04-27T19:59:11Z) - Predicting Human Choice Between Textually Described Lotteries [0.0]
本研究では,このような課題における人的意思決定の大規模探索を初めて行った。
我々は、微調整された大規模言語モデルを含む複数の計算手法を評価する。
論文 参考訳(メタデータ) (2025-03-18T08:10:33Z) - Asymptotically Optimal Regret for Black-Box Predict-then-Optimize [7.412445894287709]
我々は,特別な構造を欠いた新たなブラックボックス予測最適化問題と,その行動から得られる報酬のみを観察する方法について検討した。
本稿では,経験的ソフトレグレット(ESR, Empirical Soft Regret)と呼ばれる新しい損失関数を提案する。
また、私たちのアプローチは、ニュースレコメンデーションやパーソナライズされた医療における現実の意思決定問題において、最先端のアルゴリズムよりも大幅に優れています。
論文 参考訳(メタデータ) (2024-06-12T04:46:23Z) - Human Trajectory Forecasting with Explainable Behavioral Uncertainty [63.62824628085961]
人間の軌道予測は人間の行動を理解し予測し、社会ロボットから自動運転車への応用を可能にする。
モデルフリー手法は予測精度が優れているが説明可能性に欠ける一方、モデルベース手法は説明可能性を提供するが、よく予測できない。
BNSP-SFMは,11種類の最先端手法と比較して,予測精度を最大50%向上することを示す。
論文 参考訳(メタデータ) (2023-07-04T16:45:21Z) - ASPEST: Bridging the Gap Between Active Learning and Selective
Prediction [56.001808843574395]
選択予測は、不確実な場合の予測を棄却する信頼性のあるモデルを学ぶことを目的としている。
アクティブラーニングは、最も有意義な例を問うことで、ラベリングの全体、すなわち人間の依存度を下げることを目的としている。
本研究では,移動対象領域からより情報のあるサンプルを検索することを目的とした,新たな学習パラダイムである能動的選択予測を導入する。
論文 参考訳(メタデータ) (2023-04-07T23:51:07Z) - Preference Enhanced Social Influence Modeling for Network-Aware Cascade
Prediction [59.221668173521884]
本稿では,ユーザの嗜好モデルを強化することで,カスケードサイズ予測を促進する新しいフレームワークを提案する。
エンド・ツー・エンドの手法により,ユーザの情報拡散プロセスがより適応的で正確になる。
論文 参考訳(メタデータ) (2022-04-18T09:25:06Z) - Investigations of Performance and Bias in Human-AI Teamwork in Hiring [30.046502708053097]
AIによる意思決定では、効果的なハイブリッドチームワーク(ヒューマンAI)は、AIのパフォーマンスにのみ依存するものではない。
本研究では,モデルの予測性能とバイアスの両方が,推薦型意思決定タスクにおいてどのように人間に伝達されるかを検討する。
論文 参考訳(メタデータ) (2022-02-21T17:58:07Z) - On the Fairness of Machine-Assisted Human Decisions [3.4069627091757178]
偏りのある人間の意思決定者を含めることで、アルゴリズムの構造と結果の判断の質との間の共通関係を逆転させることができることを示す。
実験室実験では,性別別情報による予測が,意思決定における平均的な性別格差を減少させることを示す。
論文 参考訳(メタデータ) (2021-10-28T17:24:45Z) - Probabilistic Human Motion Prediction via A Bayesian Neural Network [71.16277790708529]
本稿では,人間の動作予測のための確率モデルを提案する。
我々のモデルは、観測された動きシーケンスが与えられたときに、いくつかの将来の動きを生成することができる。
我々は、大規模ベンチマークデータセットHuman3.6mに対して、我々のアプローチを広範囲に検証した。
論文 参考訳(メタデータ) (2021-07-14T09:05:33Z) - Test-time Collective Prediction [73.74982509510961]
マシンラーニングの複数のパーティは、将来のテストポイントを共同で予測したいと考えています。
エージェントは、すべてのエージェントの集合の集合的な専門知識の恩恵を受けることを望んでいるが、データやモデルパラメータを解放する意思はないかもしれない。
我々は、各エージェントの事前学習モデルを利用して、テスト時に集合的な予測を行う分散型メカニズムを探索する。
論文 参考訳(メタデータ) (2021-06-22T18:29:58Z) - A Subjective Model of Human Decision Making Based on Quantum Decision
Theory [0.0]
本稿では,異なるリスク,ゲイン,タイムプレッシャーの下でのバイナリゲーム中の個体の挙動を予測するモデルを提案する。
このモデルは量子決定理論(qdt)に基づいており、意思決定の非合理的かつ主観的側面をモデル化できることが示されている。
論文 参考訳(メタデータ) (2021-01-14T20:02:51Z) - Double Robust Representation Learning for Counterfactual Prediction [68.78210173955001]
そこで本稿では, 対実予測のための2次ロバスト表現を学習するための, スケーラブルな新しい手法を提案する。
我々は、個々の治療効果と平均的な治療効果の両方に対して、堅牢で効率的な対実的予測を行う。
このアルゴリズムは,実世界の最先端技術と合成データとの競合性能を示す。
論文 参考訳(メタデータ) (2020-10-15T16:39:26Z) - Introduction to Rare-Event Predictive Modeling for Inferential
Statisticians -- A Hands-On Application in the Prediction of Breakthrough
Patents [0.0]
本稿では,予測性能の最適化を目的とした定量的分析のための機械学習(ML)手法を提案する。
両フィールド間の潜在的な相乗効果について考察する。
我々は,コンピュータサイエンスの用語のデミスティフィケーションを目指して,定量的な社会科学の聴衆に手持ちの予測モデルの導入を行っている。
論文 参考訳(メタデータ) (2020-03-30T13:06:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。