論文の概要: MiniMax Entropy Network: Learning Category-Invariant Features for Domain Adaptation
- arxiv url: http://arxiv.org/abs/1904.09601v4
- Date: Sat, 8 Jun 2024 06:02:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-17 00:11:14.454414
- Title: MiniMax Entropy Network: Learning Category-Invariant Features for Domain Adaptation
- Title(参考訳): MiniMax Entropy Network: ドメイン適応のためのカテゴリ不変の特徴を学習する
- Authors: Chaofan Tao, Fengmao Lv, Lixin Duan, Min Wu,
- Abstract要約: 逆学習に基づくMMEN(MiniMax Entropy Networks)と呼ばれる実装が容易な手法を提案する。
ドメイン差に対処するためにジェネレータを使用する既存のアプローチとは異なり、MMENはラベルのないターゲットサンプルからカテゴリ情報を学習することに重点を置いている。
- 参考スコア(独自算出の注目度): 29.43532067090422
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: How to effectively learn from unlabeled data from the target domain is crucial for domain adaptation, as it helps reduce the large performance gap due to domain shift or distribution change. In this paper, we propose an easy-to-implement method dubbed MiniMax Entropy Networks (MMEN) based on adversarial learning. Unlike most existing approaches which employ a generator to deal with domain difference, MMEN focuses on learning the categorical information from unlabeled target samples with the help of labeled source samples. Specifically, we set an unfair multi-class classifier named categorical discriminator, which classifies source samples accurately but be confused about the categories of target samples. The generator learns a common subspace that aligns the unlabeled samples based on the target pseudo-labels. For MMEN, we also provide theoretical explanations to show that the learning of feature alignment reduces domain mismatch at the category level. Experimental results on various benchmark datasets demonstrate the effectiveness of our method over existing state-of-the-art baselines.
- Abstract(参考訳): 対象のドメインからラベル付けされていないデータから効果的に学習する方法は、ドメインシフトや分散変更による大きなパフォーマンスギャップを減らすのに役立つため、ドメイン適応に不可欠である。
本稿では,逆学習に基づくMMEN(MiniMax Entropy Networks)と呼ばれる実装が容易な手法を提案する。
ドメイン差に対処するためにジェネレータを使用する既存のアプローチとは異なり、MMENはラベル付けされたソースサンプルの助けを借りてラベル付けされていないターゲットサンプルからカテゴリ情報を学習することに重点を置いている。
具体的には、ソースサンプルを正確に分類するが、ターゲットサンプルのカテゴリについて混同される、カテゴリ識別器という不公平なマルチクラス分類器を設定した。
ジェネレータは、対象の擬似ラベルに基づいて未ラベルのサンプルを整列する共通部分空間を学習する。
MMENでは,特徴整合の学習がカテゴリレベルでのドメインミスマッチを減少させることを示す理論的説明も提供する。
種々のベンチマークデータセットによる実験結果から,既存の最先端ベースラインに対する提案手法の有効性が示された。
関連論文リスト
- ProtoGMM: Multi-prototype Gaussian-Mixture-based Domain Adaptation Model for Semantic Segmentation [0.8213829427624407]
ドメイン適応型セマンティックセグメンテーションは、ラベルのないターゲットドメインに対して正確で高密度な予測を生成することを目的としている。
本稿では,GMMを比較学習に組み込んだProtoGMMモデルを提案する。
クラス間のセマンティックな類似性の向上,クラス間の類似性の低下,およびソースドメインとターゲットドメイン間のドメインアライメントを実現するために,マルチプロトタイプコントラスト学習を採用する。
論文 参考訳(メタデータ) (2024-06-27T14:50:50Z) - centroIDA: Cross-Domain Class Discrepancy Minimization Based on
Accumulative Class-Centroids for Imbalanced Domain Adaptation [17.97306640457707]
IDA(centroIDA)の累積クラスセントロイドに基づくドメイン間差分最小化手法を提案する。
実験により,IDA問題,特にラベルシフトの程度が増大する中で,本手法が他のSOTA法よりも優れていることが示された。
論文 参考訳(メタデータ) (2023-08-21T10:35:32Z) - Unsupervised Domain Adaptation via Distilled Discriminative Clustering [45.39542287480395]
対象データの識別クラスタリングとしてドメイン適応問題を再検討する。
本稿では,ラベル付き情報源データよりも並列に教師付き学習目標を用いて,ネットワークを協調的に訓練することを提案する。
5つの人気のあるベンチマークデータセットに対して、慎重にアブレーション研究と広範な実験を行う。
論文 参考訳(メタデータ) (2023-02-23T13:03:48Z) - Cross-Domain Gradient Discrepancy Minimization for Unsupervised Domain
Adaptation [22.852237073492894]
Unsupervised Domain Adaptation (UDA) は、よくラベルされたソースドメインから未ラベルのターゲットドメインに学習された知識を一般化することを目的としている。
本稿では,ソースサンプルとターゲットサンプルが生成する勾配の差を明示的に最小化する,クロスドメイン離散化(CGDM)手法を提案する。
対象サンプルの勾配信号を計算するために,クラスタリングに基づく自己教師型学習を通じて,対象の擬似ラベルを求める。
論文 参考訳(メタデータ) (2021-06-08T07:35:40Z) - Cross-Domain Adaptive Clustering for Semi-Supervised Domain Adaptation [85.6961770631173]
半監視されたドメイン適応では、残りのターゲットサンプルのターゲットドメインガイド機能内のクラスごとのいくつかのラベル付きサンプルが、その周辺に集約される。
この問題に対処するために,クロスドメイン適応クラスタリングという新しいアプローチを提案する。
論文 参考訳(メタデータ) (2021-04-19T16:07:32Z) - OVANet: One-vs-All Network for Universal Domain Adaptation [78.86047802107025]
既存のメソッドは、検証または未知のサンプルの事前定義された比率に基づいて未知のサンプルを拒否するしきい値を手動で設定します。
本稿では,ソースサンプルを用いて閾値を学習し,対象領域に適応する手法を提案する。
私たちの考えは、ソースドメインの最小クラス間距離は、ターゲットの既知のか未知かを決定するための良いしきい値であるべきです。
論文 参考訳(メタデータ) (2021-04-07T18:36:31Z) - Your Classifier can Secretly Suffice Multi-Source Domain Adaptation [72.47706604261992]
マルチソースドメイン適応(MSDA)は、複数のラベル付きソースドメインからラベルなしターゲットドメインへのタスク知識の転送を扱う。
ラベル管理下のドメインを暗黙的に整列させる深層モデルが観察されるMSDAに対して、異なる視点を提示する。
論文 参考訳(メタデータ) (2021-03-20T12:44:13Z) - Minimax Active Learning [61.729667575374606]
アクティブラーニングは、人間のアノテーションによってラベル付けされる最も代表的なサンプルをクエリすることによって、ラベル効率の高いアルゴリズムを開発することを目指している。
現在のアクティブラーニング技術は、最も不確実なサンプルを選択するためにモデルの不確実性に頼るか、クラスタリングを使うか、最も多様なラベルのないサンプルを選択するために再構築する。
我々は,不確実性と多様性を両立させる半教師付きミニマックスエントロピーに基づく能動学習アルゴリズムを開発した。
論文 参考訳(メタデータ) (2020-12-18T19:03:40Z) - Towards Fair Cross-Domain Adaptation via Generative Learning [50.76694500782927]
ドメイン適応(DA)は、よくラベル付けされたソースドメイン上でトレーニングされたモデルを、異なる分散に横たわる未ラベルのターゲットドメインに適応することを目的としています。
本研究では,新規な生成的Few-shot Cross-Domain Adaptation (GFCA) アルゴリズムを開発した。
論文 参考訳(メタデータ) (2020-03-04T23:25:09Z) - A Sample Selection Approach for Universal Domain Adaptation [94.80212602202518]
普遍シナリオにおける教師なし領域適応の問題について検討する。
ソースドメインとターゲットドメインの間で共有されるクラスは、一部のみである。
共有クラスのサンプルの同定に有効なスコアリング方式を提案する。
論文 参考訳(メタデータ) (2020-01-14T22:28:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。