論文の概要: A Sample Selection Approach for Universal Domain Adaptation
- arxiv url: http://arxiv.org/abs/2001.05071v1
- Date: Tue, 14 Jan 2020 22:28:43 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-11 13:01:42.444261
- Title: A Sample Selection Approach for Universal Domain Adaptation
- Title(参考訳): ユニバーサルドメイン適応のためのサンプル選択手法
- Authors: Omri Lifshitz and Lior Wolf
- Abstract要約: 普遍シナリオにおける教師なし領域適応の問題について検討する。
ソースドメインとターゲットドメインの間で共有されるクラスは、一部のみである。
共有クラスのサンプルの同定に有効なスコアリング方式を提案する。
- 参考スコア(独自算出の注目度): 94.80212602202518
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the problem of unsupervised domain adaption in the universal
scenario, in which only some of the classes are shared between the source and
target domains. We present a scoring scheme that is effective in identifying
the samples of the shared classes. The score is used to select which samples in
the target domain to pseudo-label during training. Another loss term encourages
diversity of labels within each batch. Taken together, our method is shown to
outperform, by a sizable margin, the current state of the art on the literature
benchmarks.
- Abstract(参考訳): 汎用シナリオにおける教師なしドメイン適応の問題について検討し、ソースドメインとターゲットドメインの間でクラスの一部が共有される。
本稿では,共有クラスのサンプル同定に有効なスコアリング手法を提案する。
スコアは、トレーニング中にターゲットドメイン内のサンプルを擬似ラベルに選択するために使用される。
別の損失項は、各バッチ内のラベルの多様性を促進する。
総じて,本手法は,文献ベンチマークにおける現在の技術水準を,かなりのマージンで上回っていることが示される。
関連論文リスト
- Self-Paced Learning for Open-Set Domain Adaptation [50.620824701934]
従来のドメイン適応手法は、ソースとターゲットドメインのクラスが同一であると仮定する。
オープンセットドメイン適応(OSDA)は、この制限に対処する。
そこで,本研究では,共通クラスと未知クラスを識別するための自己評価学習に基づく新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-10T14:11:09Z) - Combating Label Distribution Shift for Active Domain Adaptation [16.270897459117755]
我々は、未ラベルのターゲットデータに対するアクティブドメイン適応(ADA)の問題を考える。
ドメイン適応におけるソースとターゲット間のラベル分布ミスマッチから重要な問題に対する最近の分析から着想を得て,ADAで初めてこの問題に対処する手法を考案した。
論文 参考訳(メタデータ) (2022-08-13T09:06:45Z) - Cross-Domain Adaptive Clustering for Semi-Supervised Domain Adaptation [85.6961770631173]
半監視されたドメイン適応では、残りのターゲットサンプルのターゲットドメインガイド機能内のクラスごとのいくつかのラベル付きサンプルが、その周辺に集約される。
この問題に対処するために,クロスドメイン適応クラスタリングという新しいアプローチを提案する。
論文 参考訳(メタデータ) (2021-04-19T16:07:32Z) - Instance Level Affinity-Based Transfer for Unsupervised Domain
Adaptation [74.71931918541748]
ILA-DAと呼ばれる適応中のソースからターゲットへの転送に対するインスタンス親和性に基づく基準を提案する。
まず、ソースとターゲットをまたいだ類似および異種サンプルを抽出し、マルチサンプルのコントラスト損失を利用してドメインアライメントプロセスを駆動する信頼性が高く効率的な手法を提案する。
ILA-DAの有効性は、様々なベンチマークデータセットに対する一般的なドメイン適応手法よりも精度が一貫した改善を観察することによって検証する。
論文 参考訳(メタデータ) (2021-04-03T01:33:14Z) - Your Classifier can Secretly Suffice Multi-Source Domain Adaptation [72.47706604261992]
マルチソースドメイン適応(MSDA)は、複数のラベル付きソースドメインからラベルなしターゲットドメインへのタスク知識の転送を扱う。
ラベル管理下のドメインを暗黙的に整列させる深層モデルが観察されるMSDAに対して、異なる視点を提示する。
論文 参考訳(メタデータ) (2021-03-20T12:44:13Z) - Joint Visual and Temporal Consistency for Unsupervised Domain Adaptive
Person Re-Identification [64.37745443119942]
本稿では,局所的なワンホット分類とグローバルなマルチクラス分類を組み合わせることで,視覚的・時間的整合性を両立させる。
3つの大規模ReIDデータセットの実験結果は、教師なしと教師なしの両方のドメイン適応型ReIDタスクにおいて提案手法の優位性を示す。
論文 参考訳(メタデータ) (2020-07-21T14:31:27Z) - MiniMax Entropy Network: Learning Category-Invariant Features for Domain Adaptation [29.43532067090422]
逆学習に基づくMMEN(MiniMax Entropy Networks)と呼ばれる実装が容易な手法を提案する。
ドメイン差に対処するためにジェネレータを使用する既存のアプローチとは異なり、MMENはラベルのないターゲットサンプルからカテゴリ情報を学習することに重点を置いている。
論文 参考訳(メタデータ) (2019-04-21T13:39:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。