論文の概要: An Integrated Multi-Time-Scale Modeling for Solar Irradiance Forecasting
Using Deep Learning
- arxiv url: http://arxiv.org/abs/1905.02616v3
- Date: Tue, 1 Aug 2023 13:31:35 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-02 18:45:12.807558
- Title: An Integrated Multi-Time-Scale Modeling for Solar Irradiance Forecasting
Using Deep Learning
- Title(参考訳): 深層学習を用いた太陽放射予測のための統合マルチ時間スケールモデリング
- Authors: Sakshi Mishra, Praveen Palanisamy
- Abstract要約: 太陽エネルギーの非定常特性のため、短期的な太陽照度予測は困難である。
日内太陽光のマルチスケール予測のための統一アーキテクチャを提案する。
提案手法は,全試験場の平均RMSEを71.5%削減する。
- 参考スコア(独自算出の注目度): 1.52292571922932
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: For short-term solar irradiance forecasting, the traditional point
forecasting methods are rendered less useful due to the non-stationary
characteristic of solar power. The amount of operating reserves required to
maintain reliable operation of the electric grid rises due to the variability
of solar energy. The higher the uncertainty in the generation, the greater the
operating-reserve requirements, which translates to an increased cost of
operation. In this research work, we propose a unified architecture for
multi-time-scale predictions for intra-day solar irradiance forecasting using
recurrent neural networks (RNN) and long-short-term memory networks (LSTMs).
This paper also lays out a framework for extending this modeling approach to
intra-hour forecasting horizons thus, making it a multi-time-horizon
forecasting approach, capable of predicting intra-hour as well as intra-day
solar irradiance. We develop an end-to-end pipeline to effectuate the proposed
architecture. The performance of the prediction model is tested and validated
by the methodical implementation. The robustness of the approach is
demonstrated with case studies conducted for geographically scattered sites
across the United States. The predictions demonstrate that our proposed unified
architecture-based approach is effective for multi-time-scale solar forecasts
and achieves a lower root-mean-square prediction error when benchmarked against
the best-performing methods documented in the literature that use separate
models for each time-scale during the day. Our proposed method results in a
71.5% reduction in the mean RMSE averaged across all the test sites compared to
the ML-based best-performing method reported in the literature. Additionally,
the proposed method enables multi-time-horizon forecasts with real-time inputs,
which have a significant potential for practical industry applications in the
evolving grid.
- Abstract(参考訳): 短期的な太陽照度予測では、太陽エネルギーの非定常特性のために従来の点予測法は役に立たない。
電力網の信頼性を維持するために必要な運転予備量は、太陽エネルギーの変動によって増加する。
世代内の不確実性が高ければ高いほど、運用-保存要件が大きくなるため、運用コストが増加する。
本研究では、リカレントニューラルネットワーク(RNN)と長期記憶ネットワーク(LSTM)を用いた日内太陽放射予測のためのマルチスケール予測のための統一アーキテクチャを提案する。
そこで本研究では,このモデル手法を時間内予測地平線に拡張し,時間内および日内太陽放射を予測できるマルチ時間水平予測手法を提案する。
提案するアーキテクチャを有効にするエンドツーエンドのパイプラインを開発する。
予測モデルの性能を方法論的実装によって検証し検証する。
このアプローチのロバスト性は、全米の地理的に散在した場所でのケーススタディで実証されている。
提案手法は多段階の太陽予測に有効であることを示すとともに,日中の時間スケール毎に異なるモデルを用いた文献に記録された最良の性能手法と比較した場合,ルート平均2乗予測誤差を低くする。
提案手法は,本論文で報告したmlベースベストパフォーマンス法と比較して,全試験場平均平均平均平均rmseが71.5%減少した。
さらに,提案手法により,リアルタイム入力を用いたマルチ時間水平予測が可能となり,発展途上グリッドにおける実践的産業応用に有意な可能性を秘めている。
関連論文リスト
- Improving Model Chain Approaches for Probabilistic Solar Energy Forecasting through Post-processing and Machine Learning [0.0]
我々は,グローバル水平照度と太陽光発電のアンサンブル後予測のための統計的および機械学習手法を開発した。
その結果, 後処理が発電予測を大幅に改善すること, 特に後処理が発電予測に応用されることが示唆された。
論文 参考訳(メタデータ) (2024-06-06T18:08:50Z) - On-line conformalized neural networks ensembles for probabilistic forecasting of day-ahead electricity prices [41.94295877935867]
我々はPEPFに対する新しいアプローチを提案し、同型推論に基づく手法を用いて、アートニューラルネットワークのアンサンブルの手法を拡張した。
複数の市場地域で実験が行われ、昼の予測が達成され、時間帯のカバレッジが向上し、安定した確率的スコアが得られた。
論文 参考訳(メタデータ) (2024-04-03T13:22:47Z) - Weather Prediction with Diffusion Guided by Realistic Forecast Processes [49.07556359513563]
気象予報に拡散モデル(DM)を適用した新しい手法を提案する。
提案手法は,同一のモデリングフレームワークを用いて,直接予測と反復予測の両方を実現できる。
我々のモデルの柔軟性と制御性は、一般の気象コミュニティにとってより信頼性の高いDLシステムに力を与えます。
論文 参考訳(メタデータ) (2024-02-06T21:28:42Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
農業計画や保険には1年前から予測される高品質の干ばつが不可欠だ。
私たちは、体系的なエンドツーエンドアプローチを採用するエンドツーエンドアプローチを導入することで、干ばつデータに取り組みます。
主な発見は、TransformerモデルであるEarthFormerが、正確な短期(最大6ヶ月)の予測を行う際の例外的なパフォーマンスである。
論文 参考訳(メタデータ) (2023-09-12T13:28:06Z) - Improving day-ahead Solar Irradiance Time Series Forecasting by
Leveraging Spatio-Temporal Context [46.72071291175356]
太陽発電は二酸化炭素の排出量を大幅に削減することで気候変動を緩和する大きな可能性を秘めている。
しかし、太陽光の固有の変動は、電力網に太陽エネルギーをシームレスに統合する上で大きな課題となる。
本稿では,衛星データを用いた時間的文脈の活用を目的としたディープラーニングアーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-06-01T19:54:39Z) - KPF-AE-LSTM: A Deep Probabilistic Model for Net-Load Forecasting in High
Solar Scenarios [0.0]
本稿では, 日頭ネット負荷の確率的予測を15分分解能, 様々な太陽透過レベルで生成する深層学習手法を提案する。
これらのモデルは、既存のベンチマークモデルと比較して、優れた予測性能を提供するとともに、優れたトレーニング効率を維持することが示されている。
論文 参考訳(メタデータ) (2022-03-05T10:54:54Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
確率的時系列予測は、その歴史に基づいて将来の分布を推定する。
本稿では,非線形エミッションモデルと遷移モデルとをネットワークによってパラメータ化した,確率的時系列予測のための深部状態空間モデルを提案する。
実験では,我々のモデルが正確かつ鋭い確率予測を生成することを示す。
論文 参考訳(メタデータ) (2021-01-31T06:49:33Z) - Energy Forecasting in Smart Grid Systems: A Review of the
State-of-the-art Techniques [2.3436632098950456]
本稿では,スマートグリッド(SG)システムの最先端予測手法について概説する。
統計学,機械学習(ML),深層学習(DL)などの従来の点予測手法について検討した。
ヴィクトリア朝の電力消費とアメリカの電力(AEP)の比較ケーススタディを行った。
論文 参考訳(メタデータ) (2020-11-25T09:17:07Z) - Stochastically forced ensemble dynamic mode decomposition for
forecasting and analysis of near-periodic systems [65.44033635330604]
本稿では,観測力学を強制線形系としてモデル化した新しい負荷予測手法を提案する。
固有線型力学の利用は、解釈可能性やパーシモニーの観点から、多くの望ましい性質を提供することを示す。
電力グリッドからの負荷データを用いたテストケースの結果が提示される。
論文 参考訳(メタデータ) (2020-10-08T20:25:52Z) - Forecasting Photovoltaic Power Production using a Deep Learning Sequence
to Sequence Model with Attention [0.0]
本稿では,PV発電のエンド・ツー・エンド予測のための教師付きディープラーニングモデルを提案する。
提案モデルは2つの基本概念に基づいており、他のシーケンス関連分野の大幅な性能向上につながった。
その結果、新しい設計は、PV電力予測技術の現在の状態以上で実行可能であることがわかった。
論文 参考訳(メタデータ) (2020-08-06T17:20:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。