Exploring the effects of robotic design on learning and neural control
- URL: http://arxiv.org/abs/2306.03757v1
- Date: Tue, 6 Jun 2023 15:17:34 GMT
- Title: Exploring the effects of robotic design on learning and neural control
- Authors: Joshua Paul Powers
- Abstract summary: dissertation focuses on the development of robotic bodies, rather than neural controllers.
I have discovered that robots can be designed such that they overcome many of the current pitfalls encountered by neural controllers in multitask settings.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The ongoing deep learning revolution has allowed computers to outclass humans
in various games and perceive features imperceptible to humans during
classification tasks. Current machine learning techniques have clearly
distinguished themselves in specialized tasks. However, we have yet to see
robots capable of performing multiple tasks at an expert level. Most work in
this field is focused on the development of more sophisticated learning
algorithms for a robot's controller given a largely static and presupposed
robotic design. By focusing on the development of robotic bodies, rather than
neural controllers, I have discovered that robots can be designed such that
they overcome many of the current pitfalls encountered by neural controllers in
multitask settings. Through this discovery, I also present novel metrics to
explicitly measure the learning ability of a robotic design and its resistance
to common problems such as catastrophic interference.
Traditionally, the physical robot design requires human engineers to plan
every aspect of the system, which is expensive and often relies on human
intuition. In contrast, within the field of evolutionary robotics, evolutionary
algorithms are used to automatically create optimized designs, however, such
designs are often still limited in their ability to perform in a multitask
setting. The metrics created and presented here give a novel path to automated
design that allow evolved robots to synergize with their controller to improve
the computational efficiency of their learning while overcoming catastrophic
interference.
Overall, this dissertation intimates the ability to automatically design
robots that are more general purpose than current robots and that can perform
various tasks while requiring less computation.
Related papers
- $π_0$: A Vision-Language-Action Flow Model for General Robot Control [77.32743739202543]
We propose a novel flow matching architecture built on top of a pre-trained vision-language model (VLM) to inherit Internet-scale semantic knowledge.
We evaluate our model in terms of its ability to perform tasks in zero shot after pre-training, follow language instructions from people, and its ability to acquire new skills via fine-tuning.
arXiv Detail & Related papers (2024-10-31T17:22:30Z) - Towards a Robust Soft Baby Robot With Rich Interaction Ability for Advanced Machine Learning Algorithms [25.85850890842541]
We build a robust, partially soft robotic limb with a large action space and rich sensory data stream from multiple cameras.
As a proof of concept, we train two contemporary machine learning algorithms to perform a simple target-finding task.
arXiv Detail & Related papers (2024-04-11T19:15:45Z) - HumanoidBench: Simulated Humanoid Benchmark for Whole-Body Locomotion and Manipulation [50.616995671367704]
We present a high-dimensional, simulated robot learning benchmark, HumanoidBench, featuring a humanoid robot equipped with dexterous hands.
Our findings reveal that state-of-the-art reinforcement learning algorithms struggle with most tasks, whereas a hierarchical learning approach achieves superior performance when supported by robust low-level policies.
arXiv Detail & Related papers (2024-03-15T17:45:44Z) - Efficient automatic design of robots [43.968830087704035]
We show for the first time de-novo optimization of a robot's structure to exhibit a desired behavior, within seconds on a single consumer-grade computer.
Unlike other gradient-based robot design methods, this algorithm does not presuppose any particular anatomical form.
This advance promises near instantaneous design, manufacture, and deployment of unique and useful machines for medical, environmental, vehicular, and space-based tasks.
arXiv Detail & Related papers (2023-06-05T21:30:52Z) - HERD: Continuous Human-to-Robot Evolution for Learning from Human
Demonstration [57.045140028275036]
We show that manipulation skills can be transferred from a human to a robot through the use of micro-evolutionary reinforcement learning.
We propose an algorithm for multi-dimensional evolution path searching that allows joint optimization of both the robot evolution path and the policy.
arXiv Detail & Related papers (2022-12-08T15:56:13Z) - GenLoco: Generalized Locomotion Controllers for Quadrupedal Robots [87.32145104894754]
We introduce a framework for training generalized locomotion (GenLoco) controllers for quadrupedal robots.
Our framework synthesizes general-purpose locomotion controllers that can be deployed on a large variety of quadrupedal robots.
We show that our models acquire more general control strategies that can be directly transferred to novel simulated and real-world robots.
arXiv Detail & Related papers (2022-09-12T15:14:32Z) - Evolution Gym: A Large-Scale Benchmark for Evolving Soft Robots [29.02903745467536]
We propose Evolution Gym, the first large-scale benchmark for co-optimizing the design and control of soft robots.
Our benchmark environments span a wide range of tasks, including locomotion on various types of terrains and manipulation.
We develop several robot co-evolution algorithms by combining state-of-the-art design optimization methods and deep reinforcement learning techniques.
arXiv Detail & Related papers (2022-01-24T18:39:22Z) - Lifelong Robotic Reinforcement Learning by Retaining Experiences [61.79346922421323]
Many multi-task reinforcement learning efforts assume the robot can collect data from all tasks at all times.
In this work, we study a practical sequential multi-task RL problem motivated by the practical constraints of physical robotic systems.
We derive an approach that effectively leverages the data and policies learned for previous tasks to cumulatively grow the robot's skill-set.
arXiv Detail & Related papers (2021-09-19T18:00:51Z) - Neuroscience-inspired perception-action in robotics: applying active
inference for state estimation, control and self-perception [2.1067139116005595]
We discuss how neuroscience findings open up opportunities to improve current estimation and control algorithms in robotics.
This paper summarizes some experiments and lessons learned from developing such a computational model on real embodied platforms.
arXiv Detail & Related papers (2021-05-10T10:59:38Z) - Task-relevant Representation Learning for Networked Robotic Perception [74.0215744125845]
This paper presents an algorithm to learn task-relevant representations of sensory data that are co-designed with a pre-trained robotic perception model's ultimate objective.
Our algorithm aggressively compresses robotic sensory data by up to 11x more than competing methods.
arXiv Detail & Related papers (2020-11-06T07:39:08Z) - A Survey of Behavior Learning Applications in Robotics -- State of the Art and Perspectives [44.45953630612019]
Recent success of machine learning in many domains has been overwhelming.
We will give a broad overview of behaviors that have been learned and used on real robots.
arXiv Detail & Related papers (2019-06-05T07:54:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.