Near-Optimal Methods for Minimizing Star-Convex Functions and Beyond
- URL: http://arxiv.org/abs/1906.11985v3
- Date: Fri, 24 Feb 2023 06:15:45 GMT
- Title: Near-Optimal Methods for Minimizing Star-Convex Functions and Beyond
- Authors: Oliver Hinder and Aaron Sidford and Nimit S. Sohoni
- Abstract summary: We show that no first-order method can improve upon ours.
We develop a variant accelerated descent that computes an $$quasar alog function.
No first-order method can improve upon ours.
- Score: 25.845034951660544
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we provide near-optimal accelerated first-order methods for
minimizing a broad class of smooth nonconvex functions that are strictly
unimodal on all lines through a minimizer. This function class, which we call
the class of smooth quasar-convex functions, is parameterized by a constant
$\gamma \in (0,1]$, where $\gamma = 1$ encompasses the classes of smooth convex
and star-convex functions, and smaller values of $\gamma$ indicate that the
function can be "more nonconvex." We develop a variant of accelerated gradient
descent that computes an $\epsilon$-approximate minimizer of a smooth
$\gamma$-quasar-convex function with at most $O(\gamma^{-1} \epsilon^{-1/2}
\log(\gamma^{-1} \epsilon^{-1}))$ total function and gradient evaluations. We
also derive a lower bound of $\Omega(\gamma^{-1} \epsilon^{-1/2})$ on the
worst-case number of gradient evaluations required by any deterministic
first-order method, showing that, up to a logarithmic factor, no deterministic
first-order method can improve upon ours.
Related papers
- Complexity of Minimizing Projected-Gradient-Dominated Functions with Stochastic First-order Oracles [38.45952947660789]
This work investigates the performance limits of projected first-order methods for minimizing functions under the $(alpha,tau,mathcal)$-projected-dominance property.
arXiv Detail & Related papers (2024-08-03T18:34:23Z) - A simple and improved algorithm for noisy, convex, zeroth-order optimisation [59.51990161522328]
We construct an algorithm that returns a point $hat xin barmathcal X$ such that $f(hat x)$ is as small as possible.
We prove that this method is such that the $f(hat x) - min_xin barmathcal X f(x)$ is of smaller order than $d2/sqrtn$ up to poly-logarithmic terms.
arXiv Detail & Related papers (2024-06-26T18:19:10Z) - Beyond Uniform Smoothness: A Stopped Analysis of Adaptive SGD [38.221784575853796]
This work considers the problem of finding first-order stationary point of a non atau function with potentially constant smoothness using a gradient.
We develop a technique that allows us to prove $mathcalO(fracmathrmpolylog(T)sigmatT)$ convergence rates without assuming uniform bounds on the noise.
arXiv Detail & Related papers (2023-02-13T18:13:36Z) - Estimating the minimizer and the minimum value of a regression function
under passive design [72.85024381807466]
We propose a new method for estimating the minimizer $boldsymbolx*$ and the minimum value $f*$ of a smooth and strongly convex regression function $f$.
We derive non-asymptotic upper bounds for the quadratic risk and optimization error of $boldsymbolz_n$, and for the risk of estimating $f*$.
arXiv Detail & Related papers (2022-11-29T18:38:40Z) - Lifted Primal-Dual Method for Bilinearly Coupled Smooth Minimax
Optimization [47.27237492375659]
We study the bilinearly coupled minimax problem: $min_x max_y f(x) + ytop A x - h(y)$, where $f$ and $h$ are both strongly convex smooth functions.
No known first-order algorithms have hitherto achieved the lower complexity bound of $Omega(sqrtfracL_xmu_x + frac|A|sqrtmu_x,mu_y) log(frac1vareps
arXiv Detail & Related papers (2022-01-19T05:56:19Z) - Continuous Submodular Maximization: Boosting via Non-oblivious Function [12.755674710719616]
In this paper, we revisit the constrained and continuous submodular iterations in both offline and online settings.
We use the factorrevealing optimization equation to derive an optimal auxiliary function $F$ for problem $max_boldsymbolxinmathCf(boldsymbolx)$.
In the online setting, we propose boosting a gradient feedback algorithm, achieving a regret of $sqrtD$ (where $D$ is the sum of delays of gradient feedback against $(fracgamma2)$ adversarial.
arXiv Detail & Related papers (2022-01-03T15:10:17Z) - A first-order primal-dual method with adaptivity to local smoothness [64.62056765216386]
We consider the problem of finding a saddle point for the convex-concave objective $min_x max_y f(x) + langle Ax, yrangle - g*(y)$, where $f$ is a convex function with locally Lipschitz gradient and $g$ is convex and possibly non-smooth.
We propose an adaptive version of the Condat-Vu algorithm, which alternates between primal gradient steps and dual steps.
arXiv Detail & Related papers (2021-10-28T14:19:30Z) - Finding Global Minima via Kernel Approximations [90.42048080064849]
We consider the global minimization of smooth functions based solely on function evaluations.
In this paper, we consider an approach that jointly models the function to approximate and finds a global minimum.
arXiv Detail & Related papers (2020-12-22T12:59:30Z) - Gradient Free Minimax Optimization: Variance Reduction and Faster
Convergence [120.9336529957224]
In this paper, we denote the non-strongly setting on the magnitude of a gradient-free minimax optimization problem.
We show that a novel zeroth-order variance reduced descent algorithm achieves the best known query complexity.
arXiv Detail & Related papers (2020-06-16T17:55:46Z) - Complexity of Finding Stationary Points of Nonsmooth Nonconvex Functions [84.49087114959872]
We provide the first non-asymptotic analysis for finding stationary points of nonsmooth, nonsmooth functions.
In particular, we study Hadamard semi-differentiable functions, perhaps the largest class of nonsmooth functions.
arXiv Detail & Related papers (2020-02-10T23:23:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.