Image Denoising using Attention-Residual Convolutional Neural Networks
- URL: http://arxiv.org/abs/2101.07713v1
- Date: Tue, 19 Jan 2021 16:37:57 GMT
- Title: Image Denoising using Attention-Residual Convolutional Neural Networks
- Authors: Rafael G. Pires, Daniel F. S. Santos, Marcos C.S. Santana, Claudio
F.G. Santos, Joao P. Papa
- Abstract summary: We propose a new learning-based non-blind denoising technique named Attention Residual Convolutional Neural Network (ARCNN) and its extension to blind denoising named Flexible Attention Residual Convolutional Neural Network (FARCNN)
ARCNN achieved an overall average PSNR results of around 0.44dB and 0.96dB for Gaussian and Poisson denoising, respectively FARCNN presented very consistent results, even with slightly worsen performance compared to ARCNN.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: During the image acquisition process, noise is usually added to the data
mainly due to physical limitations of the acquisition sensor, and also
regarding imprecisions during the data transmission and manipulation. In that
sense, the resultant image needs to be processed to attenuate its noise without
losing details. Non-learning-based strategies such as filter-based and noise
prior modeling have been adopted to solve the image denoising problem.
Nowadays, learning-based denoising techniques showed to be much more effective
and flexible approaches, such as Residual Convolutional Neural Networks. Here,
we propose a new learning-based non-blind denoising technique named Attention
Residual Convolutional Neural Network (ARCNN), and its extension to blind
denoising named Flexible Attention Residual Convolutional Neural Network
(FARCNN). The proposed methods try to learn the underlying noise expectation
using an Attention-Residual mechanism. Experiments on public datasets corrupted
by different levels of Gaussian and Poisson noise support the effectiveness of
the proposed approaches against some state-of-the-art image denoising methods.
ARCNN achieved an overall average PSNR results of around 0.44dB and 0.96dB for
Gaussian and Poisson denoising, respectively FARCNN presented very consistent
results, even with slightly worsen performance compared to ARCNN.
Related papers
- Enhancing convolutional neural network generalizability via low-rank weight approximation [6.763245393373041]
Sufficient denoising is often an important first step for image processing.
Deep neural networks (DNNs) have been widely used for image denoising.
We introduce a new self-supervised framework for image denoising based on the Tucker low-rank tensor approximation.
arXiv Detail & Related papers (2022-09-26T14:11:05Z) - Multi-stage image denoising with the wavelet transform [125.2251438120701]
Deep convolutional neural networks (CNNs) are used for image denoising via automatically mining accurate structure information.
We propose a multi-stage image denoising CNN with the wavelet transform (MWDCNN) via three stages, i.e., a dynamic convolutional block (DCB), two cascaded wavelet transform and enhancement blocks (WEBs) and residual block (RB)
arXiv Detail & Related papers (2022-09-26T03:28:23Z) - Robust Deep Ensemble Method for Real-world Image Denoising [62.099271330458066]
We propose a simple yet effective Bayesian deep ensemble (BDE) method for real-world image denoising.
Our BDE achieves +0.28dB PSNR gain over the state-of-the-art denoising method.
Our BDE can be extended to other image restoration tasks, and achieves +0.30dB, +0.18dB and +0.12dB PSNR gains on benchmark datasets.
arXiv Detail & Related papers (2022-06-08T06:19:30Z) - Poisson2Sparse: Self-Supervised Poisson Denoising From a Single Image [34.27748767631027]
We present a novel self-supervised learning method for single-image denoising.
We approximate traditional iterative optimization algorithms for image denoising with a recurrent neural network.
Our method outperforms the state-of-the-art approaches in terms of PSNR and SSIM.
arXiv Detail & Related papers (2022-06-04T00:08:58Z) - Zero-shot Blind Image Denoising via Implicit Neural Representations [77.79032012459243]
We propose an alternative denoising strategy that leverages the architectural inductive bias of implicit neural representations (INRs)
We show that our method outperforms existing zero-shot denoising methods under an extensive set of low-noise or real-noise scenarios.
arXiv Detail & Related papers (2022-04-05T12:46:36Z) - Practical Blind Image Denoising via Swin-Conv-UNet and Data Synthesis [148.16279746287452]
We propose a swin-conv block to incorporate the local modeling ability of residual convolutional layer and non-local modeling ability of swin transformer block.
For the training data synthesis, we design a practical noise degradation model which takes into consideration different kinds of noise.
Experiments on AGWN removal and real image denoising demonstrate that the new network architecture design achieves state-of-the-art performance.
arXiv Detail & Related papers (2022-03-24T18:11:31Z) - Exploring ensembles and uncertainty minimization in denoising networks [0.522145960878624]
We propose a fusion model consisting of two attention modules, which focus on assigning the proper weights to pixels and channels.
The experimental results show that our model achieves better performance on top of the baseline of regular pre-trained denoising networks.
arXiv Detail & Related papers (2021-01-24T20:48:18Z) - Neighbor2Neighbor: Self-Supervised Denoising from Single Noisy Images [98.82804259905478]
We present Neighbor2Neighbor to train an effective image denoising model with only noisy images.
In detail, input and target used to train a network are images sub-sampled from the same noisy image.
A denoising network is trained on sub-sampled training pairs generated in the first stage, with a proposed regularizer as additional loss for better performance.
arXiv Detail & Related papers (2021-01-08T02:03:25Z) - Noise2Inverse: Self-supervised deep convolutional denoising for
tomography [0.0]
Noise2Inverse is a deep CNN-based denoising method for linear image reconstruction algorithms.
We develop a theoretical framework which shows that such training indeed obtains a denoising CNN.
On simulated CT datasets, Noise2Inverse demonstrates an improvement in peak signal-to-noise ratio and structural similarity index.
arXiv Detail & Related papers (2020-01-31T12:50:24Z) - Variational Denoising Network: Toward Blind Noise Modeling and Removal [59.36166491196973]
Blind image denoising is an important yet very challenging problem in computer vision.
We propose a new variational inference method, which integrates both noise estimation and image denoising.
arXiv Detail & Related papers (2019-08-29T15:54:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.