Guided Random Forest and its application to data approximation
- URL: http://arxiv.org/abs/1909.00659v2
- Date: Thu, 07 Aug 2025 14:46:05 GMT
- Title: Guided Random Forest and its application to data approximation
- Authors: Prashant Gupta, Aashi Jindal, Jayadeva, Debarka Sengupta,
- Abstract summary: We extend the idea of building oblique decision trees with localized partitioning to obtain a global partitioning.<n>We empirically demonstrate that global partitioning reduces the generalization error bound.<n>Results on 115 benchmark datasets show that GRAF yields comparable or better results on a majority of datasets.
- Score: 2.6149031653868993
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a new way of constructing an ensemble classifier, named the Guided Random Forest (GRAF) in the sequel. GRAF extends the idea of building oblique decision trees with localized partitioning to obtain a global partitioning. We show that global partitioning bridges the gap between decision trees and boosting algorithms. We empirically demonstrate that global partitioning reduces the generalization error bound. Results on 115 benchmark datasets show that GRAF yields comparable or better results on a majority of datasets. We also present a new way of approximating the datasets in the framework of random forests.
Related papers
- Cluster-Based Random Forest Visualization and Interpretation [3.3362962017403364]
This paper presents a visualization method and system to increase interpretability of random forests.<n>We cluster similar trees which enables users to interpret how the model performs in general.<n>We also propose two new visualization methods that visualize both clustered and individual decision trees.
arXiv Detail & Related papers (2025-07-30T13:22:28Z) - Diversity Conscious Refined Random Forest [0.0]
Random Forest (RF) is a widely used ensemble learning technique.<n>RF often relies on hundreds of trees and all input features, leading to high cost and model redundancy.<n>We propose a Refined Random Forest that grows trees only on informative features and enforces maximal diversity by clustering and retaining uncorrelated trees.
arXiv Detail & Related papers (2025-07-01T06:28:15Z) - Learning Decision Trees as Amortized Structure Inference [59.65621207449269]
We propose a hybrid amortized structure inference approach to learn predictive decision tree ensembles given data.<n>We show that our approach, DT-GFN, outperforms state-of-the-art decision tree and deep learning methods on standard classification benchmarks.
arXiv Detail & Related papers (2025-03-10T07:05:07Z) - Split-and-Fit: Learning B-Reps via Structure-Aware Voronoi Partitioning [50.684254969269546]
We introduce a novel method for acquiring boundary representations (B-Reps) of 3D CAD models.
We apply a spatial partitioning to derive a single primitive within each partition.
We show that our network, coined NVD-Net for neural Voronoi diagrams, can effectively learn Voronoi partitions for CAD models from training data.
arXiv Detail & Related papers (2024-06-07T21:07:49Z) - Adaptive Split Balancing for Optimal Random Forest [8.916614661563893]
We propose a new random forest algorithm that constructs the trees using a novel adaptive split-balancing method.
Our method achieves optimality in simple, smooth scenarios while adaptively learning the tree structure from the data.
arXiv Detail & Related papers (2024-02-17T09:10:40Z) - Learning a Decision Tree Algorithm with Transformers [75.96920867382859]
We introduce MetaTree, a transformer-based model trained via meta-learning to directly produce strong decision trees.
We fit both greedy decision trees and globally optimized decision trees on a large number of datasets, and train MetaTree to produce only the trees that achieve strong generalization performance.
arXiv Detail & Related papers (2024-02-06T07:40:53Z) - Hierarchical clustering with dot products recovers hidden tree structure [53.68551192799585]
In this paper we offer a new perspective on the well established agglomerative clustering algorithm, focusing on recovery of hierarchical structure.
We recommend a simple variant of the standard algorithm, in which clusters are merged by maximum average dot product and not, for example, by minimum distance or within-cluster variance.
We demonstrate that the tree output by this algorithm provides a bona fide estimate of generative hierarchical structure in data, under a generic probabilistic graphical model.
arXiv Detail & Related papers (2023-05-24T11:05:12Z) - Explaining random forest prediction through diverse rulesets [0.0]
Local Tree eXtractor (LTreeX) is able to explain the forest prediction for a given test instance with a few diverse rules.
We show that our proposed approach substantially outperforms other explainable methods in terms of predictive performance.
arXiv Detail & Related papers (2022-03-29T12:54:57Z) - Minimax Rates for High-Dimensional Random Tessellation Forests [0.0]
Mondrian forests is the first class of random forests for which minimax rates were obtained in arbitrary dimension.
We show that a large class of random forests with general split directions also achieve minimax optimal convergence rates in arbitrary dimension.
arXiv Detail & Related papers (2021-09-22T06:47:38Z) - Growing Deep Forests Efficiently with Soft Routing and Learned
Connectivity [79.83903179393164]
This paper further extends the deep forest idea in several important aspects.
We employ a probabilistic tree whose nodes make probabilistic routing decisions, a.k.a., soft routing, rather than hard binary decisions.
Experiments on the MNIST dataset demonstrate that our empowered deep forests can achieve better or comparable performance than [1],[3].
arXiv Detail & Related papers (2020-12-29T18:05:05Z) - Convex Polytope Trees [57.56078843831244]
convex polytope trees (CPT) are proposed to expand the family of decision trees by an interpretable generalization of their decision boundary.
We develop a greedy method to efficiently construct CPT and scalable end-to-end training algorithms for the tree parameters when the tree structure is given.
arXiv Detail & Related papers (2020-10-21T19:38:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.