Adaptive Split Balancing for Optimal Random Forest
- URL: http://arxiv.org/abs/2402.11228v2
- Date: Sat, 31 Aug 2024 03:23:50 GMT
- Title: Adaptive Split Balancing for Optimal Random Forest
- Authors: Yuqian Zhang, Weijie Ji, Jelena Bradic,
- Abstract summary: We propose a new random forest algorithm that constructs the trees using a novel adaptive split-balancing method.
Our method achieves optimality in simple, smooth scenarios while adaptively learning the tree structure from the data.
- Score: 8.916614661563893
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose a new random forest algorithm that constructs the trees using a novel adaptive split-balancing method. Rather than relying on the widely-used random feature selection, we propose a permutation-based balanced splitting criterion. The adaptive split balancing forest (ASBF), achieves minimax optimality under the Lipschitz class. Its localized version, which fits local regressions at the leaf level, attains the minimax rate under the broad H\"older class $\mathcal{H}^{q,\beta}$ of problems for any $q\in\mathbb{N}$ and $\beta\in(0,1]$. We identify that over-reliance on auxiliary randomness in tree construction may compromise the approximation power of trees, leading to suboptimal results. Conversely, the proposed less random, permutation-based approach demonstrates optimality over a wide range of models. Although random forests are known to perform well empirically, their theoretical convergence rates are slow. Simplified versions that construct trees without data dependence offer faster rates but lack adaptability during tree growth. Our proposed method achieves optimality in simple, smooth scenarios while adaptively learning the tree structure from the data. Additionally, we establish uniform upper bounds and demonstrate that ASBF improves dimensionality dependence in average treatment effect estimation problems. Simulation studies and real-world applications demonstrate our methods' superior performance over existing random forests.
Related papers
- Can a Single Tree Outperform an Entire Forest? [5.448070998907116]
The prevailing mindset is that a single decision tree underperforms classic random forests in testing accuracy.
This study challenges such a mindset by significantly improving the testing accuracy of an oblique regression tree.
Our approach reformulates tree training as a differentiable unconstrained optimization task.
arXiv Detail & Related papers (2024-11-26T00:18:18Z) - Learning Deep Tree-based Retriever for Efficient Recommendation: Theory and Method [76.31185707649227]
We propose a Deep Tree-based Retriever (DTR) for efficient recommendation.
DTR frames the training task as a softmax-based multi-class classification over tree nodes at the same level.
To mitigate the suboptimality induced by the labeling of non-leaf nodes, we propose a rectification method for the loss function.
arXiv Detail & Related papers (2024-08-21T05:09:53Z) - Inference with Mondrian Random Forests [6.97762648094816]
We give precise bias and variance characterizations, along with a Berry-Esseen-type central limit theorem, for the Mondrian random forest regression estimator.
We present valid statistical inference methods for the unknown regression function.
Efficient and implementable algorithms are devised for both batch and online learning settings.
arXiv Detail & Related papers (2023-10-15T01:41:42Z) - bsnsing: A decision tree induction method based on recursive optimal
boolean rule composition [2.28438857884398]
This paper proposes a new mixed-integer programming (MIP) formulation to optimize split rule selection in the decision tree induction process.
It develops an efficient search solver that is able to solve practical instances faster than commercial solvers.
arXiv Detail & Related papers (2022-05-30T17:13:57Z) - On multivariate randomized classification trees: $l_0$-based sparsity,
VC~dimension and decomposition methods [0.9346127431927981]
We investigate the nonlinear continuous optimization formulation proposed in Blanquero et al.
We first consider alternative methods to sparsify such trees based on concave approximations of the $l_0$ norm"
We propose a general decomposition scheme and an efficient version of it. Experiments on larger datasets show that the proposed decomposition method is able to significantly reduce the training times without compromising the accuracy.
arXiv Detail & Related papers (2021-12-09T22:49:08Z) - Minimax Rates for High-Dimensional Random Tessellation Forests [0.0]
Mondrian forests is the first class of random forests for which minimax rates were obtained in arbitrary dimension.
We show that a large class of random forests with general split directions also achieve minimax optimal convergence rates in arbitrary dimension.
arXiv Detail & Related papers (2021-09-22T06:47:38Z) - Growing Deep Forests Efficiently with Soft Routing and Learned
Connectivity [79.83903179393164]
This paper further extends the deep forest idea in several important aspects.
We employ a probabilistic tree whose nodes make probabilistic routing decisions, a.k.a., soft routing, rather than hard binary decisions.
Experiments on the MNIST dataset demonstrate that our empowered deep forests can achieve better or comparable performance than [1],[3].
arXiv Detail & Related papers (2020-12-29T18:05:05Z) - An Efficient Adversarial Attack for Tree Ensembles [91.05779257472675]
adversarial attacks on tree based ensembles such as gradient boosting decision trees (DTs) and random forests (RFs)
We show that our method can be thousands of times faster than the previous mixed-integer linear programming (MILP) based approach.
Our code is available at https://chong-z/tree-ensemble-attack.
arXiv Detail & Related papers (2020-10-22T10:59:49Z) - Stochastic Optimization Forests [60.523606291705214]
We show how to train forest decision policies by growing trees that choose splits to directly optimize the downstream decision quality, rather than splitting to improve prediction accuracy as in the standard random forest algorithm.
We show that our approximate splitting criteria can reduce running time hundredfold, while achieving performance close to forest algorithms that exactly re-optimize for every candidate split.
arXiv Detail & Related papers (2020-08-17T16:56:06Z) - Generalized and Scalable Optimal Sparse Decision Trees [56.35541305670828]
We present techniques that produce optimal decision trees over a variety of objectives.
We also introduce a scalable algorithm that produces provably optimal results in the presence of continuous variables.
arXiv Detail & Related papers (2020-06-15T19:00:11Z) - ENTMOOT: A Framework for Optimization over Ensemble Tree Models [57.98561336670884]
ENTMOOT is a framework for integrating tree models into larger optimization problems.
We show how ENTMOOT allows a simple integration of tree models into decision-making and black-box optimization.
arXiv Detail & Related papers (2020-03-10T14:34:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.