Quantum Speedup for Graph Sparsification, Cut Approximation and
Laplacian Solving
- URL: http://arxiv.org/abs/1911.07306v4
- Date: Mon, 8 May 2023 11:00:04 GMT
- Title: Quantum Speedup for Graph Sparsification, Cut Approximation and
Laplacian Solving
- Authors: Simon Apers and Ronald de Wolf
- Abstract summary: "spectral sparsification" reduces number of edges to near-linear in number of nodes.
We show a quantum speedup for spectral sparsification and many of its applications.
Our algorithm implies a quantum speedup for solving Laplacian systems.
- Score: 1.0660480034605238
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph sparsification underlies a large number of algorithms, ranging from
approximation algorithms for cut problems to solvers for linear systems in the
graph Laplacian. In its strongest form, "spectral sparsification" reduces the
number of edges to near-linear in the number of nodes, while approximately
preserving the cut and spectral structure of the graph. In this work we
demonstrate a polynomial quantum speedup for spectral sparsification and many
of its applications. In particular, we give a quantum algorithm that, given a
weighted graph with $n$ nodes and $m$ edges, outputs a classical description of
an $\epsilon$-spectral sparsifier in sublinear time
$\tilde{O}(\sqrt{mn}/\epsilon)$. This contrasts with the optimal classical
complexity $\tilde{O}(m)$. We also prove that our quantum algorithm is optimal
up to polylog-factors. The algorithm builds on a string of existing results on
sparsification, graph spanners, quantum algorithms for shortest paths, and
efficient constructions for $k$-wise independent random strings. Our algorithm
implies a quantum speedup for solving Laplacian systems and for approximating a
range of cut problems such as min cut and sparsest cut.
Related papers
- Promise of Graph Sparsification and Decomposition for Noise Reduction in QAOA: Analysis for Trapped-Ion Compilations [5.451583832235867]
We develop new approximate compilation schemes to solve the Max-Cut problem.
Results are based on principles of graph sparsification and decomposition.
We demonstrate significant reductions in noise are obtained in our new compilation approaches.
arXiv Detail & Related papers (2024-06-20T14:00:09Z) - Quantum algorithms for Hopcroft's problem [45.45456673484445]
We study quantum algorithms for Hopcroft's problem which is a fundamental problem in computational geometry.
The classical complexity of this problem is well-studied, with the best known algorithm running in $O(n4/3)$ time.
Our results are two different quantum algorithms with time complexity $widetilde O(n5/6)$.
arXiv Detail & Related papers (2024-05-02T10:29:06Z) - Quantum speedups for linear programming via interior point methods [1.8434042562191815]
We describe a quantum algorithm for solving a linear program with $n$ inequality constraints on $d$ variables.
Our algorithm speeds up the Newton step in the state-of-the-art interior point method of Lee and Sidford.
arXiv Detail & Related papers (2023-11-06T16:00:07Z) - Efficiently Learning One-Hidden-Layer ReLU Networks via Schur
Polynomials [50.90125395570797]
We study the problem of PAC learning a linear combination of $k$ ReLU activations under the standard Gaussian distribution on $mathbbRd$ with respect to the square loss.
Our main result is an efficient algorithm for this learning task with sample and computational complexity $(dk/epsilon)O(k)$, whereepsilon>0$ is the target accuracy.
arXiv Detail & Related papers (2023-07-24T14:37:22Z) - Quantum Simulation of the First-Quantized Pauli-Fierz Hamiltonian [0.5097809301149342]
We show that a na"ive partitioning and low-order splitting formula can yield, through our divide and conquer formalism, superior scaling to qubitization for large $Lambda$.
We also give new algorithmic and circuit level techniques for gate optimization including a new way of implementing a group of multi-controlled-X gates.
arXiv Detail & Related papers (2023-06-19T23:20:30Z) - Efficient quantum linear solver algorithm with detailed running costs [0.0]
We introduce a quantum linear solver algorithm combining ideasdiabatic quantum computing with filtering techniques based on quantum signal processing.
Our protocol reduces the cost of quantum linear solvers over state-of-the-art close to an order of magnitude for early implementations.
arXiv Detail & Related papers (2023-05-19T00:07:32Z) - Deterministic Nonsmooth Nonconvex Optimization [94.01526844386977]
We show that randomization is necessary to obtain a dimension-free dimension-free algorithm.
Our algorithm yields the first deterministic dimension-free algorithm for optimizing ReLU networks.
arXiv Detail & Related papers (2023-02-16T13:57:19Z) - Gaussian Process Bandit Optimization with Few Batches [49.896920704012395]
We introduce a batch algorithm inspired by finite-arm bandit algorithms.
We show that it achieves the cumulative regret upper bound $Oast(sqrtTgamma_T)$ using $O(loglog T)$ batches within time horizon $T$.
In addition, we propose a modified version of our algorithm, and characterize how the regret is impacted by the number of batches.
arXiv Detail & Related papers (2021-10-15T00:54:04Z) - Generating Target Graph Couplings for QAOA from Native Quantum Hardware
Couplings [3.2622301272834524]
We present methods for constructing any target coupling graph using limited global controls in an Ising-like quantum spin system.
Our approach is motivated by implementing the quantum approximate optimization algorithm (QAOA) on trapped ion quantum hardware.
Noisy simulations of Max-Cut QAOA show that our implementation is less susceptible to noise than the standard gate-based compilation.
arXiv Detail & Related papers (2020-11-16T18:43:09Z) - Quantum algorithms for spectral sums [50.045011844765185]
We propose new quantum algorithms for estimating spectral sums of positive semi-definite (PSD) matrices.
We show how the algorithms and techniques used in this work can be applied to three problems in spectral graph theory.
arXiv Detail & Related papers (2020-11-12T16:29:45Z) - Online Dense Subgraph Discovery via Blurred-Graph Feedback [87.9850024070244]
We introduce a novel learning problem for dense subgraph discovery.
We first propose a edge-time algorithm that obtains a nearly-optimal solution with high probability.
We then design a more scalable algorithm with a theoretical guarantee.
arXiv Detail & Related papers (2020-06-24T11:37:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.