Quantum Simulation of the First-Quantized Pauli-Fierz Hamiltonian
- URL: http://arxiv.org/abs/2306.11198v2
- Date: Sat, 16 Mar 2024 03:07:39 GMT
- Title: Quantum Simulation of the First-Quantized Pauli-Fierz Hamiltonian
- Authors: Priyanka Mukhopadhyay, Torin F. Stetina, Nathan Wiebe,
- Abstract summary: We show that a na"ive partitioning and low-order splitting formula can yield, through our divide and conquer formalism, superior scaling to qubitization for large $Lambda$.
We also give new algorithmic and circuit level techniques for gate optimization including a new way of implementing a group of multi-controlled-X gates.
- Score: 0.5097809301149342
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We provide an explicit recursive divide and conquer approach for simulating quantum dynamics and derive a discrete first quantized non-relativistic QED Hamiltonian based on the many-particle Pauli Fierz Hamiltonian. We apply this recursive divide and conquer algorithm to this Hamiltonian and compare it to a concrete simulation algorithm that uses qubitization. Our divide and conquer algorithm, using lowest order Trotterization, scales for fixed grid spacing as $\widetilde{O}(\Lambda N^2\eta^2 t^2 /\epsilon)$ for grid size $N$, $\eta$ particles, simulation time $t$, field cutoff $\Lambda$ and error $\epsilon$. Our qubitization algorithm scales as $\widetilde{O}(N(\eta+N)(\eta +\Lambda^2) t\log(1/\epsilon)) $. This shows that even a na\"ive partitioning and low-order splitting formula can yield, through our divide and conquer formalism, superior scaling to qubitization for large $\Lambda$. We compare the relative costs of these two algorithms on systems that are relevant for applications such as the spontaneous emission of photons, and the photoionization of electrons. We observe that for different parameter regimes, one method can be favored over the other. Finally, we give new algorithmic and circuit level techniques for gate optimization including a new way of implementing a group of multi-controlled-X gates that can be used for better analysis of circuit cost.
Related papers
- Optimized Quantum Simulation Algorithms for Scalar Quantum Field Theories [0.3394351835510634]
We provide practical simulation methods for scalar field theories on a quantum computer that yield improveds.
We implement our approach using a series of different fault-tolerant simulation algorithms for Hamiltonians.
We find in both cases that the bounds suggest physically meaningful simulations can be performed using on the order of $4times 106$ physical qubits and $1012$ $T$-gates.
arXiv Detail & Related papers (2024-07-18T18:00:01Z) - Private estimation algorithms for stochastic block models and mixture
models [63.07482515700984]
General tools for designing efficient private estimation algorithms.
First efficient $(epsilon, delta)$-differentially private algorithm for both weak recovery and exact recovery.
arXiv Detail & Related papers (2023-01-11T09:12:28Z) - On the complexity of implementing Trotter steps [2.1369834525800138]
We develop methods to perform faster Trotter steps with complexity sublinear in number of terms.
We also realize faster Trotter steps when certain blocks of Hamiltonian coefficients have low rank.
Our result suggests the use of Hamiltonian structural properties as both necessary and sufficient to implement Trotter synthesis steps with lower gate complexity.
arXiv Detail & Related papers (2022-11-16T19:00:01Z) - Learning many-body Hamiltonians with Heisenberg-limited scaling [3.460138063155115]
We propose the first algorithm to achieve the Heisenberg limit for learning interacting $N$-qubit local Hamiltonian.
After a total evolution time of $mathcalO(epsilon-1)$, the proposed algorithm can efficiently estimate any parameter in the $N$-qubit Hamiltonian to $epsilon$-error with high probability.
arXiv Detail & Related papers (2022-10-06T16:30:51Z) - Quantum Resources Required to Block-Encode a Matrix of Classical Data [56.508135743727934]
We provide circuit-level implementations and resource estimates for several methods of block-encoding a dense $Ntimes N$ matrix of classical data to precision $epsilon$.
We examine resource tradeoffs between the different approaches and explore implementations of two separate models of quantum random access memory (QRAM)
Our results go beyond simple query complexity and provide a clear picture into the resource costs when large amounts of classical data are assumed to be accessible to quantum algorithms.
arXiv Detail & Related papers (2022-06-07T18:00:01Z) - Twisted hybrid algorithms for combinatorial optimization [68.8204255655161]
Proposed hybrid algorithms encode a cost function into a problem Hamiltonian and optimize its energy by varying over a set of states with low circuit complexity.
We show that for levels $p=2,ldots, 6$, the level $p$ can be reduced by one while roughly maintaining the expected approximation ratio.
arXiv Detail & Related papers (2022-03-01T19:47:16Z) - How to simulate quantum measurement without computing marginals [3.222802562733787]
We describe and analyze algorithms for classically computation measurement of an $n$-qubit quantum state $psi$ in the standard basis.
Our algorithms reduce the sampling task to computing poly(n)$ amplitudes of $n$-qubit states.
arXiv Detail & Related papers (2021-12-15T21:44:05Z) - Quantum algorithms for spectral sums [50.045011844765185]
We propose new quantum algorithms for estimating spectral sums of positive semi-definite (PSD) matrices.
We show how the algorithms and techniques used in this work can be applied to three problems in spectral graph theory.
arXiv Detail & Related papers (2020-11-12T16:29:45Z) - Enhancing the Quantum Linear Systems Algorithm using Richardson
Extrapolation [0.8057006406834467]
We present a quantum algorithm to solve systems of linear equations of the form $Amathbfx=mathbfb$.
The algorithm achieves an exponential improvement with respect to $N$ over classical methods.
arXiv Detail & Related papers (2020-09-09T18:00:09Z) - Single-Timescale Stochastic Nonconvex-Concave Optimization for Smooth
Nonlinear TD Learning [145.54544979467872]
We propose two single-timescale single-loop algorithms that require only one data point each step.
Our results are expressed in a form of simultaneous primal and dual side convergence.
arXiv Detail & Related papers (2020-08-23T20:36:49Z) - Quantum Algorithms for Simulating the Lattice Schwinger Model [63.18141027763459]
We give scalable, explicit digital quantum algorithms to simulate the lattice Schwinger model in both NISQ and fault-tolerant settings.
In lattice units, we find a Schwinger model on $N/2$ physical sites with coupling constant $x-1/2$ and electric field cutoff $x-1/2Lambda$.
We estimate observables which we cost in both the NISQ and fault-tolerant settings by assuming a simple target observable---the mean pair density.
arXiv Detail & Related papers (2020-02-25T19:18:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.