Quantum Speedup for Sampling Random Spanning Trees
- URL: http://arxiv.org/abs/2504.15603v2
- Date: Thu, 24 Apr 2025 10:30:08 GMT
- Title: Quantum Speedup for Sampling Random Spanning Trees
- Authors: Simon Apers, Minbo Gao, Zhengfeng Ji, Chenghua Liu,
- Abstract summary: We present a quantum algorithm for sampling random spanning trees from a weighted graph in $widetildeO(sqrtmn)$ time.<n>Our algorithm has sublinear runtime for dense graphs and achieves a quantum speedup over the best-known classical algorithm.
- Score: 2.356162747014486
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a quantum algorithm for sampling random spanning trees from a weighted graph in $\widetilde{O}(\sqrt{mn})$ time, where $n$ and $m$ denote the number of vertices and edges, respectively. Our algorithm has sublinear runtime for dense graphs and achieves a quantum speedup over the best-known classical algorithm, which runs in $\widetilde{O}(m)$ time. The approach carefully combines, on one hand, a classical method based on ``large-step'' random walks for reduced mixing time and, on the other hand, quantum algorithmic techniques, including quantum graph sparsification and a sampling-without-replacement variant of Hamoudi's multiple-state preparation. We also establish a matching lower bound, proving the optimality of our algorithm up to polylogarithmic factors. These results highlight the potential of quantum computing in accelerating fundamental graph sampling problems.
Related papers
- Quantum Algorithms for Stochastic Differential Equations: A Schrödingerisation Approach [29.662683446339194]
We propose quantum algorithms for linear differential equations.<n>The gate complexity of our algorithms exhibits an $mathcalO(dlog(Nd))$ dependence on the dimensions.<n>The algorithms are numerically verified for the Ornstein-Uhlenbeck processes, Brownian motions, and one-dimensional L'evy flights.
arXiv Detail & Related papers (2024-12-19T14:04:11Z) - Sum-of-Squares inspired Quantum Metaheuristic for Polynomial Optimization with the Hadamard Test and Approximate Amplitude Constraints [76.53316706600717]
Recently proposed quantum algorithm arXiv:2206.14999 is based on semidefinite programming (SDP)
We generalize the SDP-inspired quantum algorithm to sum-of-squares.
Our results show that our algorithm is suitable for large problems and approximate the best known classicals.
arXiv Detail & Related papers (2024-08-14T19:04:13Z) - Quantum algorithms for Hopcroft's problem [45.45456673484445]
We study quantum algorithms for Hopcroft's problem which is a fundamental problem in computational geometry.
The classical complexity of this problem is well-studied, with the best known algorithm running in $O(n4/3)$ time.
Our results are two different quantum algorithms with time complexity $widetilde O(n5/6)$.
arXiv Detail & Related papers (2024-05-02T10:29:06Z) - Comparison among Classical, Probabilistic and Quantum Algorithms for
Hamiltonian Cycle problem [0.0]
Hamiltonian cycle problem (HCP) consists of having a graph G with n nodes and m edges and finding the path that connects each node exactly once.
In this paper we compare some algorithms to solve aHCP, using different models of computations and especially the probabilistic and quantum ones.
arXiv Detail & Related papers (2023-11-18T02:36:10Z) - Stochastic Quantum Sampling for Non-Logconcave Distributions and
Estimating Partition Functions [13.16814860487575]
We present quantum algorithms for sampling from nonlogconcave probability distributions.
$f$ can be written as a finite sum $f(x):= frac1Nsum_k=1N f_k(x)$.
arXiv Detail & Related papers (2023-10-17T17:55:32Z) - Quantum Clustering with k-Means: a Hybrid Approach [117.4705494502186]
We design, implement, and evaluate three hybrid quantum k-Means algorithms.
We exploit quantum phenomena to speed up the computation of distances.
We show that our hybrid quantum k-Means algorithms can be more efficient than the classical version.
arXiv Detail & Related papers (2022-12-13T16:04:16Z) - Entanglement and coherence in Bernstein-Vazirani algorithm [58.720142291102135]
Bernstein-Vazirani algorithm allows one to determine a bit string encoded into an oracle.
We analyze in detail the quantum resources in the Bernstein-Vazirani algorithm.
We show that in the absence of entanglement, the performance of the algorithm is directly related to the amount of quantum coherence in the initial state.
arXiv Detail & Related papers (2022-05-26T20:32:36Z) - Faster quantum mixing of Markov chains in non-regular graph with fewer
qubits [0.0]
In quantum cases, qsampling from Markov chains can be constructed as preparing quantum states with amplitudes arbitrarily close to the square root of a stationary distribution.
In this paper, a new qsampling algorithm for all reversible Markov chains is constructed by discrete-time quantum walks.
In non-regular graphs, the invocation of the quantum fast-forward algorithm accelerates existing state-of-the-art qsampling algorithms for both discrete-time and continuous-time cases.
arXiv Detail & Related papers (2022-05-12T14:08:08Z) - Quantum Optimization of Maximum Independent Set using Rydberg Atom
Arrays [39.76254807200083]
We experimentally investigate quantum algorithms for solving the Maximum Independent Set problem.
We find the problem hardness is controlled by the solution degeneracy and number of local minima.
On the hardest graphs, we observe a superlinear quantum speedup in finding exact solutions.
arXiv Detail & Related papers (2022-02-18T19:00:01Z) - Quantum Sampling Algorithms for Near-Term Devices [0.0]
We introduce a family of quantum algorithms that provide unbiased samples by encoding the entire Gibbs distribution.
We show that this approach leads to a speedup over a classical Markov chain algorithm.
It opens the door to exploring potentially useful sampling algorithms on near-term quantum devices.
arXiv Detail & Related papers (2020-05-28T14:46:20Z) - Quantum Speedup for Graph Sparsification, Cut Approximation and
Laplacian Solving [1.0660480034605238]
"spectral sparsification" reduces number of edges to near-linear in number of nodes.
We show a quantum speedup for spectral sparsification and many of its applications.
Our algorithm implies a quantum speedup for solving Laplacian systems.
arXiv Detail & Related papers (2019-11-17T17:29:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.