論文の概要: Counterfactual Vision-and-Language Navigation via Adversarial Path Sampling
- arxiv url: http://arxiv.org/abs/1911.07308v4
- Date: Mon, 17 Mar 2025 16:53:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-23 19:23:28.618343
- Title: Counterfactual Vision-and-Language Navigation via Adversarial Path Sampling
- Title(参考訳): 逆経路サンプリングによる実測・照準ナビゲーション
- Authors: Tsu-Jui Fu, Xin Eric Wang, Matthew Peterson, Scott Grafton, Miguel Eckstein, William Yang Wang,
- Abstract要約: VLN(Vision-and-Language Navigation)は、エージェントが目標を達成するために3D環境を移動する方法を決定するタスクである。
VLNタスクの問題点の1つは、対話型環境において、人間に注釈を付けた指示で十分なナビゲーションパスを収集することは困難であるため、データの不足である。
本稿では,低品質な拡張データではなく,効果的な条件を考慮可能な,対向駆動の反実的推論モデルを提案する。
- 参考スコア(独自算出の注目度): 65.99956848461915
- License:
- Abstract: Vision-and-Language Navigation (VLN) is a task where agents must decide how to move through a 3D environment to reach a goal by grounding natural language instructions to the visual surroundings. One of the problems of the VLN task is data scarcity since it is difficult to collect enough navigation paths with human-annotated instructions for interactive environments. In this paper, we explore the use of counterfactual thinking as a human-inspired data augmentation method that results in robust models. Counterfactual thinking is a concept that describes the human propensity to create possible alternatives to life events that have already occurred. We propose an adversarial-driven counterfactual reasoning model that can consider effective conditions instead of low-quality augmented data. In particular, we present a model-agnostic adversarial path sampler (APS) that learns to sample challenging paths that force the navigator to improve based on the navigation performance. APS also serves to do pre-exploration of unseen environments to strengthen the model's ability to generalize. We evaluate the influence of APS on the performance of different VLN baseline models using the room-to-room dataset (R2R). The results show that the adversarial training process with our proposed APS benefits VLN models under both seen and unseen environments. And the pre-exploration process can further gain additional improvements under unseen environments.
- Abstract(参考訳): VLN(Vision-and-Language Navigation)は、視覚的な環境に自然言語の指示を接地することで目標を達成するために、エージェントが3D環境を移動する方法を決定するタスクである。
VLNタスクの問題点の1つは、対話型環境において、人間に注釈を付けた指示で十分なナビゲーションパスを収集することは困難であるため、データの不足である。
本稿では,人間にインスパイアされたデータ拡張手法として,反現実的思考を用いたロバストモデルを提案する。
カウンターファクチュアル・シンキング(英: Counterfactual Thinking)は、すでに発生した生命現象の代替手段を作るための人間の正当性を記述する概念である。
本稿では,低品質な拡張データではなく,効果的な条件を考慮可能な,対向駆動の反実的推論モデルを提案する。
特に,航法性能に基づいてナビゲータに改善を強いる困難な経路のサンプルを学習する,モデル非依存の逆経路サンプリング器(APS)を提案する。
APSはまた、モデルを一般化する能力を強化するために、目に見えない環境の事前探索も行っている。
ルーム・ツー・ルーム・データセット(R2R)を用いて,異なるVLNベースラインモデルの性能に及ぼすAPSの影響を評価する。
以上の結果から,提案したAPSによる対人訓練プロセスは,視覚環境と見えない環境下でのVLNモデルに有効であることが示唆された。
そして、探索前のプロセスは、目に見えない環境下でさらに改善される可能性がある。
関連論文リスト
- UnitedVLN: Generalizable Gaussian Splatting for Continuous Vision-Language Navigation [71.97405667493477]
我々は,UnitedVLNと呼ばれる,新しい汎用3DGSベースの事前学習パラダイムを導入する。
エージェントは、高忠実度360度ビジュアルイメージとセマンティック特徴を統一してレンダリングすることで、将来の環境をよりよく探索することができる。
UnitedVLNは既存のVLN-CEベンチマークで最先端の手法より優れている。
論文 参考訳(メタデータ) (2024-11-25T02:44:59Z) - Fine-Grained Alignment in Vision-and-Language Navigation through Bayesian Optimization [20.608059199982094]
本稿では,視覚・言語ナビゲーション(VLN)タスクにおける細粒度アライメントの課題に対処する。
現在のアプローチでは、対照的な学習を用いて、言語を視覚的軌跡シーケンスと整合させる。
本稿では, ベイズ最適化に基づく逆最適化フレームワークを導入し, 微細なコントラスト視覚サンプルを作成する。
論文 参考訳(メタデータ) (2024-11-22T09:12:02Z) - Human-Aware Vision-and-Language Navigation: Bridging Simulation to Reality with Dynamic Human Interactions [69.9980759344628]
Vision-and-Language Navigation (VLN)は、人間の指示に基づいてナビゲートするエンボディエージェントを開発することを目的としている。
本稿では,人間の動的活動を取り入れ,従来のVLNを拡張したHuman-Aware Vision-and-Language Navigation (HA-VLN)を紹介する。
本稿では, クロスモーダル融合と多種多様なトレーニング戦略を利用して, エキスパート・スーパーモーダル・クロスモーダル (VLN-CM) と非エキスパート・スーパーモーダル・ディシジョン・トランスフォーマー (VLN-DT) のエージェントを提示する。
論文 参考訳(メタデータ) (2024-06-27T15:01:42Z) - TINA: Think, Interaction, and Action Framework for Zero-Shot Vision Language Navigation [11.591176410027224]
本稿では,Large Language Models(LLM)に基づく視覚言語ナビゲーション(VLN)エージェントを提案する。
環境認識におけるLLMの欠点を補うための思考・相互作用・行動の枠組みを提案する。
また,本手法は教師付き学習手法よりも優れ,ゼロショットナビゲーションの有効性を強調した。
論文 参考訳(メタデータ) (2024-03-13T05:22:39Z) - Towards Deviation-Robust Agent Navigation via Perturbation-Aware
Contrastive Learning [125.61772424068903]
視覚言語ナビゲーション(VLN)は、エージェントに与えられた言語命令に従って実際の3D環境をナビゲートするように要求する。
本稿では,既存のVLNエージェントの一般化能力を高めるために,PROPER(Progressive Perturbation-aware Contrastive Learning)と呼ばれるモデルに依存しない学習パラダイムを提案する。
論文 参考訳(メタデータ) (2024-03-09T02:34:13Z) - Masked Path Modeling for Vision-and-Language Navigation [41.7517631477082]
ヴィジュアル・アンド・ランゲージ・ナビゲーション(VLN)エージェントは、自然言語の指示に従うことで現実世界の環境をナビゲートするように訓練されている。
以前のアプローチでは、トレーニング中に追加の監督を導入することでこの問題に対処しようと試みていた。
本稿では,下流ナビゲーションタスクに自己コンパイルデータを用いてエージェントを事前訓練する,マスク付きパスモデリング(MPM)手法を提案する。
論文 参考訳(メタデータ) (2023-05-23T17:20:20Z) - Visual-Language Navigation Pretraining via Prompt-based Environmental
Self-exploration [83.96729205383501]
本稿では,言語埋め込みの高速適応を実現するために,プロンプトベースの学習を導入する。
我々のモデルは、VLNやREVERIEを含む多様な視覚言語ナビゲーションタスクに適応することができる。
論文 参考訳(メタデータ) (2022-03-08T11:01:24Z) - Diagnosing the Environment Bias in Vision-and-Language Navigation [102.02103792590076]
VLN(Vision-and-Language Navigation)は、エージェントが自然言語の指示に従い、与えられた環境を探索し、所望の目標地点に到達する必要がある。
VLNを研究する最近の研究は、目に見えない環境でのテストでは、顕著なパフォーマンス低下を観察しており、ニューラルエージェントモデルがトレーニング環境に非常に偏っていることを示している。
本研究では, この環境バイアスの原因を探るため, 環境再分割と機能置換による新しい診断実験を設計する。
論文 参考訳(メタデータ) (2020-05-06T19:24:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。