論文の概要: TINA: Think, Interaction, and Action Framework for Zero-Shot Vision Language Navigation
- arxiv url: http://arxiv.org/abs/2403.08833v1
- Date: Wed, 13 Mar 2024 05:22:39 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-16 00:41:28.817173
- Title: TINA: Think, Interaction, and Action Framework for Zero-Shot Vision Language Navigation
- Title(参考訳): TINA: ゼロショット視覚言語ナビゲーションのための思考,インタラクション,アクションフレームワーク
- Authors: Dingbang Li, Wenzhou Chen, Xin Lin,
- Abstract要約: 本稿では,Large Language Models(LLM)に基づく視覚言語ナビゲーション(VLN)エージェントを提案する。
環境認識におけるLLMの欠点を補うための思考・相互作用・行動の枠組みを提案する。
また,本手法は教師付き学習手法よりも優れ,ゼロショットナビゲーションの有効性を強調した。
- 参考スコア(独自算出の注目度): 11.591176410027224
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Zero-shot navigation is a critical challenge in Vision-Language Navigation (VLN) tasks, where the ability to adapt to unfamiliar instructions and to act in unknown environments is essential. Existing supervised learning-based models, trained using annotated data through reinforcement learning, exhibit limitations in generalization capabilities. Large Language Models (LLMs), with their extensive knowledge and emergent reasoning abilities, present a potential pathway for achieving zero-shot navigation. This paper presents a VLN agent based on LLMs, exploring approaches to the zero-shot navigation problem. To compensate for the shortcomings of LLMs in environmental perception, we propose the Thinking, Interacting, and Action (TINA) framework. TINA enables the agent to scrutinize perceptual information and autonomously query key clues within the environment through an introduced question-answering module, thereby aligning instructions with specific perceptual data. The navigation agent's perceptual abilities are enhanced through the TINA framework, while the explicit thought and query processes also improve the navigational procedure's explainability and transparency. We evaluate the performance of our method on the Room-to-Room dataset. The experiment results indicate that our approach improves the navigation performance of LLM-based agents. Our approach also outperformed some supervised learning-based methods, highlighting its efficacy in zero-shot navigation.
- Abstract(参考訳): ゼロショットナビゲーションはビジョンランゲージナビゲーション(VLN)タスクにおいて重要な課題であり、不慣れな命令に適応し、未知の環境で動作させる能力が不可欠である。
既存の教師付き学習ベースモデルは、強化学習を通じて注釈付きデータを使用して訓練され、一般化能力の限界を示す。
大きな言語モデル(LLM)は、その豊富な知識と創発的な推論能力を持ち、ゼロショットナビゲーションを達成するための潜在的経路を示す。
本稿では、ゼロショットナビゲーション問題に対するアプローチを探るLLMに基づくVLNエージェントを提案する。
環境認識におけるLLMの欠点を補うために,思考・相互作用・行動(TINA)フレームワークを提案する。
TINAは、エージェントが知覚情報を精査し、導入した質問応答モジュールを通じて、環境内のキーキーを自律的に問い合わせることを可能にし、特定の知覚データと指示を整合させる。
ナビゲーションエージェントの知覚能力はTINAフレームワークを通じて強化され、明示的な思考とクエリプロセスはナビゲーション手順の説明可能性と透明性も向上する。
提案手法の性能をRoom-to-Roomデータセットで評価した。
実験の結果,LLMエージェントのナビゲーション性能が向上することが示唆された。
また,本手法は教師付き学習手法よりも優れ,ゼロショットナビゲーションの有効性を強調した。
関連論文リスト
- NavGPT-2: Unleashing Navigational Reasoning Capability for Large Vision-Language Models [30.685419129265252]
我々は、VLN特化モデルとLLMに基づくナビゲーションパラダイムの分割を橋渡しする。
我々は、効果的な行動予測とナビゲーション推論のために、LCMとナビゲーションポリシーネットワークを組み込む方法を利用する。
論文 参考訳(メタデータ) (2024-07-17T07:44:26Z) - MC-GPT: Empowering Vision-and-Language Navigation with Memory Map and Reasoning Chains [4.941781282578696]
Vision-and-Language Navigation (VLN)タスクでは、エージェントは自然言語の指示に従って目的地に向かう必要がある。
学習ベースのアプローチはタスクに対する主要な解決策だが、高いトレーニングコストと解釈可能性の欠如に悩まされている。
近年、Large Language Models (LLMs) は強力な一般化能力のため、VLNにとって有望なツールとして登場した。
論文 参考訳(メタデータ) (2024-05-17T08:33:27Z) - NavCoT: Boosting LLM-Based Vision-and-Language Navigation via Learning
Disentangled Reasoning [101.56342075720588]
Embodied AIの重要な研究課題であるVision-and-Language Navigation (VLN)は、自然言語の指示に従って複雑な3D環境をナビゲートするために、エンボディエージェントを必要とする。
近年の研究では、ナビゲーションの推論精度と解釈可能性を改善することにより、VLNにおける大きな言語モデル(LLM)の有望な能力を強調している。
本稿では,自己誘導型ナビゲーション決定を実現するために,パラメータ効率の高いドメイン内トレーニングを実現する,Navigational Chain-of-Thought (NavCoT) という新しい戦略を提案する。
論文 参考訳(メタデータ) (2024-03-12T07:27:02Z) - NavGPT: Explicit Reasoning in Vision-and-Language Navigation with Large
Language Models [17.495162643127003]
我々は,複雑なエンボディシーンにおけるGPTモデルの推論能力を明らかにするために,NavGPTを導入した。
NavGPTは、視覚的な観察、ナビゲーション履歴、将来の探索可能な方向のテキスト記述を入力として、エージェントの現在の状態を推論する。
本研究では,NavGPTが経路に沿った観察や行動から高品質なナビゲーション命令を生成可能であることを示す。
論文 参考訳(メタデータ) (2023-05-26T14:41:06Z) - Masked Path Modeling for Vision-and-Language Navigation [41.7517631477082]
ヴィジュアル・アンド・ランゲージ・ナビゲーション(VLN)エージェントは、自然言語の指示に従うことで現実世界の環境をナビゲートするように訓練されている。
以前のアプローチでは、トレーニング中に追加の監督を導入することでこの問題に対処しようと試みていた。
本稿では,下流ナビゲーションタスクに自己コンパイルデータを用いてエージェントを事前訓練する,マスク付きパスモデリング(MPM)手法を提案する。
論文 参考訳(メタデータ) (2023-05-23T17:20:20Z) - KERM: Knowledge Enhanced Reasoning for Vision-and-Language Navigation [61.08389704326803]
VLN(Vision-and-Language Navigation)は、実シーンにおける自然言語命令に続く遠隔地への移動を可能にするタスクである。
以前のアプローチのほとんどは、ナビゲート可能な候補を表現するために、機能全体やオブジェクト中心の機能を利用している。
本稿では,知識を活用したエージェントナビゲーション能力向上のための知識強化推論モデル(KERM)を提案する。
論文 参考訳(メタデータ) (2023-03-28T08:00:46Z) - Visual-Language Navigation Pretraining via Prompt-based Environmental
Self-exploration [83.96729205383501]
本稿では,言語埋め込みの高速適応を実現するために,プロンプトベースの学習を導入する。
我々のモデルは、VLNやREVERIEを含む多様な視覚言語ナビゲーションタスクに適応することができる。
論文 参考訳(メタデータ) (2022-03-08T11:01:24Z) - Contrastive Instruction-Trajectory Learning for Vision-Language
Navigation [66.16980504844233]
視覚言語ナビゲーション(VLN)タスクでは、エージェントが自然言語の指示でターゲットに到達する必要がある。
先行研究は、命令-軌道対間の類似点と相違点を識別できず、サブ命令の時間的連続性を無視する。
本稿では、類似したデータサンプル間の分散と、異なるデータサンプル間の分散を探索し、ロバストなナビゲーションのための独特な表現を学習するContrastive Instruction-Trajectory Learningフレームワークを提案する。
論文 参考訳(メタデータ) (2021-12-08T06:32:52Z) - Diagnosing Vision-and-Language Navigation: What Really Matters [61.72935815656582]
視覚言語ナビゲーション(VLN)は、エージェントが自然言語の指示に従って視覚環境をナビゲートするマルチモーダルタスクである。
近年の研究では、室内および屋外のVLNタスクのパフォーマンス改善が鈍化している。
本研究では,ナビゲーション中のエージェントの焦点を明らかにするための一連の診断実験を行う。
論文 参考訳(メタデータ) (2021-03-30T17:59:07Z) - Active Visual Information Gathering for Vision-Language Navigation [115.40768457718325]
視覚言語ナビゲーション(VLN)は、エージェントがフォトリアリスティックな環境の中でナビゲーションの指示を行うためのタスクである。
VLNの重要な課題の1つは、曖昧な指示による不確実性を緩和し、環境の観察を不十分にすることで、堅牢なナビゲーションを行う方法である。
この研究は、人間のナビゲーション行動からインスピレーションを得て、よりインテリジェントなVLNポリシーのためのアクティブな情報収集能力を持つエージェントを提供する。
論文 参考訳(メタデータ) (2020-07-15T23:54:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。