Beyond Shannon Limits: Quantum Communications through Quantum Paths
- URL: http://arxiv.org/abs/1912.08575v2
- Date: Wed, 29 Mar 2023 16:44:03 GMT
- Title: Beyond Shannon Limits: Quantum Communications through Quantum Paths
- Authors: Marcello Caleffi, Kyrylo Simonov, Angela Sara Cacciapuoti
- Abstract summary: We study the quantum capacity achievable via a quantum path and establish upper and the lower bounds for it.
Our findings reveal the substantial advantage achievable with a quantum path over any classical placements of communications channels in terms of ultimate achievable communication rates.
- Score: 7.219077740523682
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A crucial step towards the 6th generation (6G) of networks would be a shift
in communication paradigm beyond the limits of Shannon's theory. In both
classical and quantum Shannon's information theory, communication channels are
generally assumed to combine through classical trajectories, so that the
associated network path traversed by the information carrier is well-defined.
Counter-intuitively, quantum mechanics enables a quantum information carrier to
propagate through a quantum path, i.e., through a path such that the causal
order of the constituting communications channels becomes indefinite. Quantum
paths exhibit astonishing features, such as providing non-null capacity even
when no information can be sent through any classical path. In this paper, we
study the quantum capacity achievable via a quantum path and establish upper
and the lower bounds for it. Our findings reveal the substantial advantage
achievable with a quantum path over any classical placements of communications
channels in terms of ultimate achievable communication rates. Furthermore, we
identify the region where a quantum path incontrovertibly outperforms the
amount of transmissible information beyond the limits of conventional quantum
Shannon's theory, and we quantify this advantage over classical paths through a
conservative estimate.
Related papers
- Distributed Quantum Computation via Entanglement Forging and Teleportation [13.135604356093193]
Distributed quantum computation is a practical method for large-scale quantum computation on quantum processors with limited size.
In this paper, we demonstrate the methods to implement a nonlocal quantum circuit on two quantum processors without any quantum correlations.
arXiv Detail & Related papers (2024-09-04T08:10:40Z) - Physical Layer Aspects of Quantum Communications: A Survey [31.406787669796184]
Quantum communication systems support unique applications in the form of distributed quantum computing, distributed quantum sensing, and several cryptographic protocols.
Main enabler in these communication systems is an efficient infrastructure that is capable to transport unknown quantum states with high rate and fidelity.
Despite the fundamental differences between the classic and quantum worlds, there exist universal communication concepts that may proven beneficial in quantum communication systems as well.
arXiv Detail & Related papers (2024-07-12T13:16:47Z) - Quantum integrated sensing and communication via entanglement [4.854937611943075]
We propose a novel quantum integrated sensing and communication protocol, which achieves quantum sensing under the Heisenberg limit.
We have theoretically proven its security against eavesdroppers.
arXiv Detail & Related papers (2024-04-12T09:17:43Z) - Quantum Semantic Communications for Resource-Efficient Quantum Networking [52.3355619190963]
This letter proposes a novel quantum semantic communications (QSC) framework exploiting advancements in quantum machine learning and quantum semantic representations.
The proposed framework achieves approximately 50-75% reduction in quantum communication resources needed, while achieving a higher quantum semantic fidelity.
arXiv Detail & Related papers (2022-05-05T03:49:19Z) - An Evolutionary Pathway for the Quantum Internet Relying on Secure
Classical Repeaters [64.48099252278821]
We conceive quantum networks using secure classical repeaters combined with the quantum secure direct communication principle.
In these networks, the ciphertext gleaned from a quantum-resistant algorithm is transmitted using QSDC along the nodes.
We have presented the first experimental demonstration of a secure classical repeater based hybrid quantum network.
arXiv Detail & Related papers (2022-02-08T03:24:06Z) - The Entanglement-Assisted Communication Capacity over Quantum
Trajectories [6.836162272841265]
We show that indefinite causal order of quantum channels enables the violation of bottleneck capacity.
We derive capacity expressions of entanglement-assisted classical and quantum communication for arbitrary quantum Pauli channels.
arXiv Detail & Related papers (2021-10-15T13:09:54Z) - The Computational and Latency Advantage of Quantum Communication
Networks [70.01340727637825]
This article summarises the current status of classical communication networks.
It identifies some critical open research challenges that can only be solved by leveraging quantum technologies.
arXiv Detail & Related papers (2021-06-07T06:31:02Z) - Direct Quantum Communications in the Presence of Realistic Noisy
Entanglement [69.25543534545538]
We propose a novel quantum communication scheme relying on realistic noisy pre-shared entanglement.
Our performance analysis shows that the proposed scheme offers competitive QBER, yield, and goodput.
arXiv Detail & Related papers (2020-12-22T13:06:12Z) - Quantum information spreading in a disordered quantum walk [50.591267188664666]
We design a quantum probing protocol using Quantum Walks to investigate the Quantum Information spreading pattern.
We focus on the coherent static and dynamic disorder to investigate anomalous and classical transport.
Our results show that a Quantum Walk can be considered as a readout device of information about defects and perturbations occurring in complex networks.
arXiv Detail & Related papers (2020-10-20T20:03:19Z) - Fault-tolerant Coding for Quantum Communication [71.206200318454]
encode and decode circuits to reliably send messages over many uses of a noisy channel.
For every quantum channel $T$ and every $eps>0$ there exists a threshold $p(epsilon,T)$ for the gate error probability below which rates larger than $C-epsilon$ are fault-tolerantly achievable.
Our results are relevant in communication over large distances, and also on-chip, where distant parts of a quantum computer might need to communicate under higher levels of noise.
arXiv Detail & Related papers (2020-09-15T15:10:50Z) - Aggregating Quantum Networks [0.0]
Single packets of information can now be split and transmitted in a coherent way over different routes.
This aggregation allows information to be transmitted in a fault tolerant way between different parts of the quantum network.
It is a quantum phenomenon not available in conventional telecommunication networks either.
arXiv Detail & Related papers (2020-08-10T01:53:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.