Aggregating Quantum Networks
- URL: http://arxiv.org/abs/2008.03856v2
- Date: Wed, 12 Aug 2020 06:32:36 GMT
- Title: Aggregating Quantum Networks
- Authors: Nicolo Lo Piparo, Michael Hanks, Kae Nemoto, William J. Munro
- Abstract summary: Single packets of information can now be split and transmitted in a coherent way over different routes.
This aggregation allows information to be transmitted in a fault tolerant way between different parts of the quantum network.
It is a quantum phenomenon not available in conventional telecommunication networks either.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum networking allows the transmission of information in ways unavailable
in the classical world. Single packets of information can now be split and
transmitted in a coherent way over different routes. This aggregation allows
information to be transmitted in a fault tolerant way between different parts
of the quantum network (or the future internet) - even when that is not
achievable with a single path approach. It is a quantum phenomenon not
available in conventional telecommunication networks either. We show how the
multiplexing of independent quantum channels allows a distributed form of
quantum error correction to protect the transmission of quantum information
between nodes or users of a quantum network. Combined with spatial-temporal
single photon multiplexing we observe a significant drop in network resources
required to transmit that quantum signal - even when only two channels are
involved. This work goes far beyond the concepts of channel capacities and
shows how quantum networking may operate in the future. Further it shows that
quantum networks are likely to operate differently from their classical
counterparts which is an important distinction as we design larger scale ones.
Related papers
- Quantum aggregation with temporal delay [0.0]
We explore the effects of a depolarization channel that occurs for the quantum Reed-Solomon code when quantum aggregation involving different channel lengths is used.
Our results will have a significant impact on the ways physical resources are distributed across a quantum network.
arXiv Detail & Related papers (2024-04-04T07:35:39Z) - Guarantees on the structure of experimental quantum networks [105.13377158844727]
Quantum networks connect and supply a large number of nodes with multi-party quantum resources for secure communication, networked quantum computing and distributed sensing.
As these networks grow in size, certification tools will be required to answer questions regarding their properties.
We demonstrate a general method to guarantee that certain correlations cannot be generated in a given quantum network.
arXiv Detail & Related papers (2024-03-04T19:00:00Z) - Quantum Fusion of Independent Networks Based on Multi-user Entanglement
Swapping [10.329329036590705]
We demonstrate the quantum fusion of two independent networks for the first time based on multiuser entanglement swapping.
Our approach opens attractive opportunities for the establishment of quantum entanglement between remote nodes in different networks.
arXiv Detail & Related papers (2023-12-06T04:13:05Z) - Entanglement-Assisted Quantum Networks: Mechanics, Enabling
Technologies, Challenges, and Research Directions [66.27337498864556]
This paper presents a comprehensive survey of entanglement-assisted quantum networks.
It provides a detailed overview of the network structure, working principles, and development stages.
It also emphasizes open research directions, including architecture design, entanglement-based network issues, and standardization.
arXiv Detail & Related papers (2023-07-24T02:48:22Z) - Quantum Network Tomography with Multi-party State Distribution [10.52717496410392]
characterization of quantum channels in a quantum network is of paramount importance.
We introduce the problem of Quantum Network Tomography.
We study this problem in detail for the case of arbitrary star quantum networks with quantum channels described by a single Pauli operator.
arXiv Detail & Related papers (2022-06-06T21:47:09Z) - Packet Switching in Quantum Networks: A Path to Quantum Internet [0.0]
We introduce packet switching as a new paradigm for quantum data transmission in future and near-term quantum networks.
We propose a classical-quantum data frame structure and explore methods of frame generation and processing.
We present conceptual designs for a quantum reconfigurable optical add-drop multiplexer to realize the proposed transmission scheme.
arXiv Detail & Related papers (2022-05-16T08:39:05Z) - An Evolutionary Pathway for the Quantum Internet Relying on Secure
Classical Repeaters [64.48099252278821]
We conceive quantum networks using secure classical repeaters combined with the quantum secure direct communication principle.
In these networks, the ciphertext gleaned from a quantum-resistant algorithm is transmitted using QSDC along the nodes.
We have presented the first experimental demonstration of a secure classical repeater based hybrid quantum network.
arXiv Detail & Related papers (2022-02-08T03:24:06Z) - The Computational and Latency Advantage of Quantum Communication
Networks [70.01340727637825]
This article summarises the current status of classical communication networks.
It identifies some critical open research challenges that can only be solved by leveraging quantum technologies.
arXiv Detail & Related papers (2021-06-07T06:31:02Z) - Computation-aided classical-quantum multiple access to boost network
communication speeds [61.12008553173672]
We quantify achievable quantum communication rates of codes with computation property for a two-sender cq-MAC.
We show that it achieves the maximum possible communication rate (the single-user capacity), which cannot be achieved with conventional design.
arXiv Detail & Related papers (2021-05-30T11:19:47Z) - A Quantum Network Node with Crossed Optical Fibre Cavities [0.0]
We develop a quantum network node that connects to two quantum channels.
It functions as a passive, heralded and high-fidelity quantum memory.
Our node is robust, fits naturally into larger fibre-based networks, can be scaled to more cavities, and thus provides clear perspectives for a quantum internet.
arXiv Detail & Related papers (2020-04-19T12:17:17Z) - Single-Shot Secure Quantum Network Coding for General Multiple Unicast
Network with Free One-Way Public Communication [56.678354403278206]
We propose a canonical method to derive a secure quantum network code over a multiple unicast quantum network.
Our code correctly transmits quantum states when there is no attack.
It also guarantees the secrecy of the transmitted quantum state even with the existence of an attack.
arXiv Detail & Related papers (2020-03-30T09:25:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.