Planar Prior Assisted PatchMatch Multi-View Stereo
- URL: http://arxiv.org/abs/1912.11744v1
- Date: Thu, 26 Dec 2019 01:34:05 GMT
- Title: Planar Prior Assisted PatchMatch Multi-View Stereo
- Authors: Qingshan Xu and Wenbing Tao
- Abstract summary: completeness of 3D models is still a challenging problem in multi-view stereo.
Planar models are advantageous to the depth estimation of low-textured areas.
PatchMatch multi-view stereo is very efficient for its sampling and propagation scheme.
- Score: 32.41293572426403
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The completeness of 3D models is still a challenging problem in multi-view
stereo (MVS) due to the unreliable photometric consistency in low-textured
areas. Since low-textured areas usually exhibit strong planarity, planar models
are advantageous to the depth estimation of low-textured areas. On the other
hand, PatchMatch multi-view stereo is very efficient for its sampling and
propagation scheme. By taking advantage of planar models and PatchMatch
multi-view stereo, we propose a planar prior assisted PatchMatch multi-view
stereo framework in this paper. In detail, we utilize a probabilistic graphical
model to embed planar models into PatchMatch multi-view stereo and contribute a
novel multi-view aggregated matching cost. This novel cost takes both
photometric consistency and planar compatibility into consideration, making it
suited for the depth estimation of both non-planar and planar regions.
Experimental results demonstrate that our method can efficiently recover the
depth information of extremely low-textured areas, thus obtaining high complete
3D models and achieving state-of-the-art performance.
Related papers
- Freeplane: Unlocking Free Lunch in Triplane-Based Sparse-View Reconstruction Models [25.482316017879327]
We present textbfFrequency modulattextbfed tritextbfplane (textbfFreeplane), a simple yet effective method to improve the generation quality of feed-forward models without additional training.
We first analyze the role of triplanes in feed-forward methods and find that the inconsistent multi-view images introduce high-frequency artifacts on triplanes, leading to low-quality 3D meshes.
arXiv Detail & Related papers (2024-06-02T14:07:50Z) - FreeSplat: Generalizable 3D Gaussian Splatting Towards Free-View Synthesis of Indoor Scenes [50.534213038479926]
FreeSplat is capable of reconstructing geometrically consistent 3D scenes from long sequence input towards free-view synthesis.
We propose a simple but effective free-view training strategy that ensures robust view synthesis across broader view range regardless of the number of views.
arXiv Detail & Related papers (2024-05-28T08:40:14Z) - 360 Layout Estimation via Orthogonal Planes Disentanglement and Multi-view Geometric Consistency Perception [56.84921040837699]
Existing panoramic layout estimation solutions tend to recover room boundaries from a vertically compressed sequence, yielding imprecise results.
We propose an orthogonal plane disentanglement network (termed DOPNet) to distinguish ambiguous semantics.
We also present an unsupervised adaptation technique tailored for horizon-depth and ratio representations.
Our solution outperforms other SoTA models on both monocular layout estimation and multi-view layout estimation tasks.
arXiv Detail & Related papers (2023-12-26T12:16:03Z) - MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View
Stereo [7.130834755320434]
We propose a resilient and effective multi-view stereo approach (MP-MVS)
We design a multi-scale windows PatchMatch (mPM) to obtain reliable depth of untextured areas.
In contrast with other multi-scale approaches, which is faster and can be easily extended to PatchMatch-based MVS approaches.
arXiv Detail & Related papers (2023-09-23T07:30:42Z) - Multi-Plane Neural Radiance Fields for Novel View Synthesis [5.478764356647437]
Novel view synthesis is a long-standing problem that revolves around rendering frames of scenes from novel camera viewpoints.
In this work, we examine the performance, generalization, and efficiency of single-view multi-plane neural radiance fields.
We propose a new multiplane NeRF architecture that accepts multiple views to improve the synthesis results and expand the viewing range.
arXiv Detail & Related papers (2023-03-03T06:32:55Z) - Revisiting PatchMatch Multi-View Stereo for Urban 3D Reconstruction [1.1011268090482573]
A complete pipeline for image-based 3D reconstruction of urban scenarios is proposed, based on PatchMatch Multi-View Stereo (MVS)
The proposed approach is carefully evaluated against both classical MVS algorithms and monocular depth networks on the KITTI dataset.
arXiv Detail & Related papers (2022-07-18T08:45:54Z) - PatchMVSNet: Patch-wise Unsupervised Multi-View Stereo for
Weakly-Textured Surface Reconstruction [2.9896482273918434]
This paper proposes robust loss functions leveraging constraints beneath multi-view images to alleviate matching ambiguity.
Our strategy can be implemented with arbitrary depth estimation frameworks and can be trained with arbitrary large-scale MVS datasets.
Our method reaches the performance of the state-of-the-art methods on popular benchmarks, like DTU, Tanks and Temples and ETH3D.
arXiv Detail & Related papers (2022-03-04T07:05:23Z) - TANDEM: Tracking and Dense Mapping in Real-time using Deep Multi-view
Stereo [55.30992853477754]
We present TANDEM, a real-time monocular tracking and dense framework.
For pose estimation, TANDEM performs photometric bundle adjustment based on a sliding window of alignments.
TANDEM shows state-of-the-art real-time 3D reconstruction performance.
arXiv Detail & Related papers (2021-11-14T19:01:02Z) - Neural Radiance Fields Approach to Deep Multi-View Photometric Stereo [103.08512487830669]
We present a modern solution to the multi-view photometric stereo problem (MVPS)
We procure the surface orientation using a photometric stereo (PS) image formation model and blend it with a multi-view neural radiance field representation to recover the object's surface geometry.
Our method performs neural rendering of multi-view images while utilizing surface normals estimated by a deep photometric stereo network.
arXiv Detail & Related papers (2021-10-11T20:20:03Z) - DeepMultiCap: Performance Capture of Multiple Characters Using Sparse
Multiview Cameras [63.186486240525554]
DeepMultiCap is a novel method for multi-person performance capture using sparse multi-view cameras.
Our method can capture time varying surface details without the need of using pre-scanned template models.
arXiv Detail & Related papers (2021-05-01T14:32:13Z) - PatchmatchNet: Learned Multi-View Patchmatch Stereo [70.14789588576438]
We present PatchmatchNet, a novel and learnable cascade formulation of Patchmatch for high-resolution multi-view stereo.
With high speed and low memory requirement, PatchmatchNet can process higher resolution imagery and is more suited to run on resource limited devices than competitors that employ 3D cost volume regularization.
arXiv Detail & Related papers (2020-12-02T18:59:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.