Unposed Sparse Views Room Layout Reconstruction in the Age of Pretrain Model
- URL: http://arxiv.org/abs/2502.16779v3
- Date: Tue, 04 Mar 2025 09:24:06 GMT
- Title: Unposed Sparse Views Room Layout Reconstruction in the Age of Pretrain Model
- Authors: Yaxuan Huang, Xili Dai, Jianan Wang, Xianbiao Qi, Yixing Yuan, Xiangyu Yue,
- Abstract summary: We introduce Plane-DUSt3R, a novel method for multi-view room layout estimation.<n>Plane-DUSt3R incorporates the DUSt3R framework and fine-tunes on a room layout dataset (Structure3D) with a modified objective to estimate structural planes.<n>By generating uniform and parsimonious results, Plane-DUSt3R enables room layout estimation with only a single post-processing step and 2D detection results.
- Score: 15.892685514932323
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Room layout estimation from multiple-perspective images is poorly investigated due to the complexities that emerge from multi-view geometry, which requires muti-step solutions such as camera intrinsic and extrinsic estimation, image matching, and triangulation. However, in 3D reconstruction, the advancement of recent 3D foundation models such as DUSt3R has shifted the paradigm from the traditional multi-step structure-from-motion process to an end-to-end single-step approach. To this end, we introduce Plane-DUSt3R, a novel method for multi-view room layout estimation leveraging the 3D foundation model DUSt3R. Plane-DUSt3R incorporates the DUSt3R framework and fine-tunes on a room layout dataset (Structure3D) with a modified objective to estimate structural planes. By generating uniform and parsimonious results, Plane-DUSt3R enables room layout estimation with only a single post-processing step and 2D detection results. Unlike previous methods that rely on single-perspective or panorama image, Plane-DUSt3R extends the setting to handle multiple-perspective images. Moreover, it offers a streamlined, end-to-end solution that simplifies the process and reduces error accumulation. Experimental results demonstrate that Plane-DUSt3R not only outperforms state-of-the-art methods on the synthetic dataset but also proves robust and effective on in the wild data with different image styles such as cartoon. Our code is available at: https://github.com/justacar/Plane-DUSt3R
Related papers
- MonoPlane: Exploiting Monocular Geometric Cues for Generalizable 3D Plane Reconstruction [37.481945507799594]
This paper presents a generalizable 3D plane detection and reconstruction framework named MonoPlane.
We first leverage large-scale pre-trained neural networks to obtain the depth and surface normals from a single image.
These monocular geometric cues are then incorporated into a proximity-guided RANSAC framework to sequentially fit each plane instance.
arXiv Detail & Related papers (2024-11-02T12:15:29Z) - MVD-Fusion: Single-view 3D via Depth-consistent Multi-view Generation [54.27399121779011]
We present MVD-Fusion: a method for single-view 3D inference via generative modeling of multi-view-consistent RGB-D images.
We show that our approach can yield more accurate synthesis compared to recent state-of-the-art, including distillation-based 3D inference and prior multi-view generation methods.
arXiv Detail & Related papers (2024-04-04T17:59:57Z) - 360 Layout Estimation via Orthogonal Planes Disentanglement and Multi-view Geometric Consistency Perception [56.84921040837699]
Existing panoramic layout estimation solutions tend to recover room boundaries from a vertically compressed sequence, yielding imprecise results.
We propose an orthogonal plane disentanglement network (termed DOPNet) to distinguish ambiguous semantics.
We also present an unsupervised adaptation technique tailored for horizon-depth and ratio representations.
Our solution outperforms other SoTA models on both monocular layout estimation and multi-view layout estimation tasks.
arXiv Detail & Related papers (2023-12-26T12:16:03Z) - FrozenRecon: Pose-free 3D Scene Reconstruction with Frozen Depth Models [67.96827539201071]
We propose a novel test-time optimization approach for 3D scene reconstruction.
Our method achieves state-of-the-art cross-dataset reconstruction on five zero-shot testing datasets.
arXiv Detail & Related papers (2023-08-10T17:55:02Z) - PlaneRecTR++: Unified Query Learning for Joint 3D Planar Reconstruction and Pose Estimation [10.982464344805194]
PlaneRecTR++ is a Transformer-based architecture that unifies all sub-tasks related to multi-view reconstruction and pose estimation.
Our proposed unified learning achieves mutual benefits across sub-tasks, obtaining a new state-of-the-art performance on public ScanNetv1, ScanNetv2, NYUv2-Plane, and MatterPort3D datasets.
arXiv Detail & Related papers (2023-07-25T18:28:19Z) - Learning to Generate 3D Representations of Building Roofs Using
Single-View Aerial Imagery [68.3565370706598]
We present a novel pipeline for learning the conditional distribution of a building roof mesh given pixels from an aerial image.
Unlike alternative methods that require multiple images of the same object, our approach enables estimating 3D roof meshes using only a single image for predictions.
arXiv Detail & Related papers (2023-03-20T15:47:05Z) - PlaneFormers: From Sparse View Planes to 3D Reconstruction [14.45228936875838]
We present an approach for the planar surface reconstruction of a scene from images with limited overlap.
We introduce a simpler approach, the PlaneFormer, that uses a transformer applied to 3D-aware plane tokens to perform 3D reasoning.
arXiv Detail & Related papers (2022-08-08T17:58:13Z) - Single-view 3D Mesh Reconstruction for Seen and Unseen Categories [69.29406107513621]
Single-view 3D Mesh Reconstruction is a fundamental computer vision task that aims at recovering 3D shapes from single-view RGB images.
This paper tackles Single-view 3D Mesh Reconstruction, to study the model generalization on unseen categories.
We propose an end-to-end two-stage network, GenMesh, to break the category boundaries in reconstruction.
arXiv Detail & Related papers (2022-08-04T14:13:35Z) - MCTS with Refinement for Proposals Selection Games in Scene
Understanding [32.92475660892122]
We propose a novel method applicable in many scene understanding problems that adapts the Monte Carlo Tree Search (MCTS) algorithm.
From a generated pool of proposals, our method jointly selects and optimize proposals that maximize the objective term.
Our method shows high performance on the Matterport3D dataset without introducing hard constraints on room layout configurations.
arXiv Detail & Related papers (2022-07-07T10:15:54Z) - Leveraging Monocular Disparity Estimation for Single-View Reconstruction [8.583436410810203]
We leverage advances in monocular depth estimation to obtain disparity maps.
We transform 2D normalized disparity maps into 3D point clouds by solving an optimization on the relevant camera parameters.
arXiv Detail & Related papers (2022-07-01T03:05:40Z) - Neural 3D Scene Reconstruction with the Manhattan-world Assumption [58.90559966227361]
This paper addresses the challenge of reconstructing 3D indoor scenes from multi-view images.
Planar constraints can be conveniently integrated into the recent implicit neural representation-based reconstruction methods.
The proposed method outperforms previous methods by a large margin on 3D reconstruction quality.
arXiv Detail & Related papers (2022-05-05T17:59:55Z) - Automated LoD-2 Model Reconstruction from Very-HighResolution
Satellite-derived Digital Surface Model and Orthophoto [1.2691047660244335]
We propose a model-driven method that reconstructs LoD-2 building models following a "decomposition-optimization-fitting" paradigm.
Our proposed method has addressed a few technical caveats over existing methods, resulting in practically high-quality results.
arXiv Detail & Related papers (2021-09-08T19:03:09Z) - Learning to Reconstruct 3D Non-Cuboid Room Layout from a Single RGB
Image [32.5277483805739]
Single-image room layout reconstruction aims to reconstruct the enclosed 3D structure of a room from a single image.
This paper considers a more general indoor assumption, i.e., the room layout consists of a single ceiling, a single floor, and several vertical walls.
arXiv Detail & Related papers (2021-04-16T09:24:08Z) - Multi-View Multi-Person 3D Pose Estimation with Plane Sweep Stereo [71.59494156155309]
Existing approaches for multi-view 3D pose estimation explicitly establish cross-view correspondences to group 2D pose detections from multiple camera views.
We present our multi-view 3D pose estimation approach based on plane sweep stereo to jointly address the cross-view fusion and 3D pose reconstruction in a single shot.
arXiv Detail & Related papers (2021-04-06T03:49:35Z) - Reinforced Axial Refinement Network for Monocular 3D Object Detection [160.34246529816085]
Monocular 3D object detection aims to extract the 3D position and properties of objects from a 2D input image.
Conventional approaches sample 3D bounding boxes from the space and infer the relationship between the target object and each of them, however, the probability of effective samples is relatively small in the 3D space.
We propose to start with an initial prediction and refine it gradually towards the ground truth, with only one 3d parameter changed in each step.
This requires designing a policy which gets a reward after several steps, and thus we adopt reinforcement learning to optimize it.
arXiv Detail & Related papers (2020-08-31T17:10:48Z) - Lightweight Multi-View 3D Pose Estimation through Camera-Disentangled
Representation [57.11299763566534]
We present a solution to recover 3D pose from multi-view images captured with spatially calibrated cameras.
We exploit 3D geometry to fuse input images into a unified latent representation of pose, which is disentangled from camera view-points.
Our architecture then conditions the learned representation on camera projection operators to produce accurate per-view 2d detections.
arXiv Detail & Related papers (2020-04-05T12:52:29Z) - General 3D Room Layout from a Single View by Render-and-Compare [36.94817376590415]
We present a novel method to reconstruct the 3D layout of a room from a single perspective view.
Our dataset consists of 293 images from ScanNet, which we annotated with precise 3D layouts.
arXiv Detail & Related papers (2020-01-07T16:14:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.