Software Effort Estimation using Neuro Fuzzy Inference System: Past and
Present
- URL: http://arxiv.org/abs/1912.11855v1
- Date: Thu, 26 Dec 2019 12:55:38 GMT
- Title: Software Effort Estimation using Neuro Fuzzy Inference System: Past and
Present
- Authors: Aditi Sharma, Ravi Ranjan
- Abstract summary: Inaccurate software estimation may lead to delay in project, over-budget or cancellation of the project.
In this paper, we are analyzing the new approach for estimation i.e. Neuro Fuzzy Inference System (NFIS)
- Score: 1.7767466724342065
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Most important reason for project failure is poor effort estimation. Software
development effort estimation is needed for assigning appropriate team members
for development, allocating resources for software development, binding etc.
Inaccurate software estimation may lead to delay in project, over-budget or
cancellation of the project. But the effort estimation models are not very
efficient. In this paper, we are analyzing the new approach for estimation i.e.
Neuro Fuzzy Inference System (NFIS). It is a mixture model that consolidates
the components of artificial neural network with fuzzy logic for giving a
better estimation.
Related papers
- Using Machine Learning To Identify Software Weaknesses From Software
Requirement Specifications [49.1574468325115]
This research focuses on finding an efficient machine learning algorithm to identify software weaknesses from requirement specifications.
Keywords extracted using latent semantic analysis help map the CWE categories to PROMISE_exp. Naive Bayes, support vector machine (SVM), decision trees, neural network, and convolutional neural network (CNN) algorithms were tested.
arXiv Detail & Related papers (2023-08-10T13:19:10Z) - Recent Advances in Software Effort Estimation using Machine Learning [0.0]
We review the most recent machine learning approaches used to estimate software development efforts for both, non-agile and agile methodologies.
We analyze the benefits of adopting an agile methodology in terms of effort estimation possibilities.
We conclude with an analysis of current and future trends, regarding software effort estimation through data-driven predictive models.
arXiv Detail & Related papers (2023-03-06T20:25:16Z) - A Deep Neural Network Based Approach to Building Budget-Constrained
Models for Big Data Analysis [11.562071835482223]
We introduce an approach to eliminating less important features for big data analysis using Deep Neural Networks (DNNs)
We identify the weak links and weak neurons, and remove some input features to bring the model cost within a given budget.
arXiv Detail & Related papers (2023-02-23T00:00:32Z) - Interpretable Self-Aware Neural Networks for Robust Trajectory
Prediction [50.79827516897913]
We introduce an interpretable paradigm for trajectory prediction that distributes the uncertainty among semantic concepts.
We validate our approach on real-world autonomous driving data, demonstrating superior performance over state-of-the-art baselines.
arXiv Detail & Related papers (2022-11-16T06:28:20Z) - Neural Causal Models for Counterfactual Identification and Estimation [62.30444687707919]
We study the evaluation of counterfactual statements through neural models.
First, we show that neural causal models (NCMs) are expressive enough.
Second, we develop an algorithm for simultaneously identifying and estimating counterfactual distributions.
arXiv Detail & Related papers (2022-09-30T18:29:09Z) - Refining neural network predictions using background knowledge [68.35246878394702]
We show we can use logical background knowledge in learning system to compensate for a lack of labeled training data.
We introduce differentiable refinement functions that find a corrected prediction close to the original prediction.
This algorithm finds optimal refinements on complex SAT formulas in significantly fewer iterations and frequently finds solutions where gradient descent can not.
arXiv Detail & Related papers (2022-06-10T10:17:59Z) - ANNETTE: Accurate Neural Network Execution Time Estimation with Stacked
Models [56.21470608621633]
We propose a time estimation framework to decouple the architectural search from the target hardware.
The proposed methodology extracts a set of models from micro- kernel and multi-layer benchmarks and generates a stacked model for mapping and network execution time estimation.
We compare estimation accuracy and fidelity of the generated mixed models, statistical models with the roofline model, and a refined roofline model for evaluation.
arXiv Detail & Related papers (2021-05-07T11:39:05Z) - ALT-MAS: A Data-Efficient Framework for Active Testing of Machine
Learning Algorithms [58.684954492439424]
We propose a novel framework to efficiently test a machine learning model using only a small amount of labeled test data.
The idea is to estimate the metrics of interest for a model-under-test using Bayesian neural network (BNN)
arXiv Detail & Related papers (2021-04-11T12:14:04Z) - Software Effort Estimation using parameter tuned Models [1.9336815376402716]
The imprecision of the estimation is the reason for Project Failure.
The greatest pitfall of the software industry was the fast-changing nature of software development.
We need the development of useful models that accurately predict the cost of developing a software product.
arXiv Detail & Related papers (2020-08-25T15:18:59Z) - Ensemble Regression Models for Software Development Effort Estimation: A
Comparative Study [0.0]
This study determines which technique has better effort prediction accuracy and propose combined techniques that could provide better estimates.
The results have indicated that the proposed ensemble models, besides delivering high efficiency in contrast to its counterparts, and produces the best responses for software project effort estimation.
arXiv Detail & Related papers (2020-07-03T14:40:41Z) - Software Defect Prediction Based On Deep Learning Models: Performance
Study [0.5735035463793008]
Two deep learning models, Stack Sparse Auto-Encoder (SSAE) and Deep Belief Network (DBN) are deployed to classify NASA datasets.
According to the conducted experiment, the accuracy for the datasets with sufficient samples is enhanced.
arXiv Detail & Related papers (2020-04-02T06:02:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.