Refining neural network predictions using background knowledge
- URL: http://arxiv.org/abs/2206.04976v1
- Date: Fri, 10 Jun 2022 10:17:59 GMT
- Title: Refining neural network predictions using background knowledge
- Authors: Alessandro Daniele, Emile van Krieken, Luciano Serafini, Frank van
Harmelen
- Abstract summary: We show we can use logical background knowledge in learning system to compensate for a lack of labeled training data.
We introduce differentiable refinement functions that find a corrected prediction close to the original prediction.
This algorithm finds optimal refinements on complex SAT formulas in significantly fewer iterations and frequently finds solutions where gradient descent can not.
- Score: 68.35246878394702
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent work has showed we can use logical background knowledge in learning
system to compensate for a lack of labeled training data. Many such methods
work by creating a loss function that encodes this knowledge. However, often
the logic is discarded after training, even if it is still useful at test-time.
Instead, we ensure neural network predictions satisfy the knowledge by refining
the predictions with an extra computation step. We introduce differentiable
refinement functions that find a corrected prediction close to the original
prediction.
We study how to effectively and efficiently compute these refinement
functions. Using a new algorithm, we combine refinement functions to find
refined predictions for logical formulas of any complexity. This algorithm
finds optimal refinements on complex SAT formulas in significantly fewer
iterations and frequently finds solutions where gradient descent can not.
Related papers
- Newton Losses: Using Curvature Information for Learning with Differentiable Algorithms [80.37846867546517]
We show how to train eight different neural networks with custom objectives.
We exploit their second-order information via their empirical Fisherssian matrices.
We apply Loss Lossiable algorithms to achieve significant improvements for less differentiable algorithms.
arXiv Detail & Related papers (2024-10-24T18:02:11Z) - SGD method for entropy error function with smoothing l0 regularization for neural networks [3.108634881604788]
entropy error function has been widely used in neural networks.
We propose a novel entropy function with smoothing l0 regularization for feed-forward neural networks.
Our work is novel as it enables neural networks to learn effectively, producing more accurate predictions.
arXiv Detail & Related papers (2024-05-28T19:54:26Z) - Guaranteed Approximation Bounds for Mixed-Precision Neural Operators [83.64404557466528]
We build on intuition that neural operator learning inherently induces an approximation error.
We show that our approach reduces GPU memory usage by up to 50% and improves throughput by 58% with little or no reduction in accuracy.
arXiv Detail & Related papers (2023-07-27T17:42:06Z) - The Cascaded Forward Algorithm for Neural Network Training [61.06444586991505]
We propose a new learning framework for neural networks, namely Cascaded Forward (CaFo) algorithm, which does not rely on BP optimization as that in FF.
Unlike FF, our framework directly outputs label distributions at each cascaded block, which does not require generation of additional negative samples.
In our framework each block can be trained independently, so it can be easily deployed into parallel acceleration systems.
arXiv Detail & Related papers (2023-03-17T02:01:11Z) - Scalable computation of prediction intervals for neural networks via
matrix sketching [79.44177623781043]
Existing algorithms for uncertainty estimation require modifying the model architecture and training procedure.
This work proposes a new algorithm that can be applied to a given trained neural network and produces approximate prediction intervals.
arXiv Detail & Related papers (2022-05-06T13:18:31Z) - Predictive Coding: Towards a Future of Deep Learning beyond
Backpropagation? [41.58529335439799]
The backpropagation of error algorithm used to train deep neural networks has been fundamental to the successes of deep learning.
Recent work has developed the idea into a general-purpose algorithm able to train neural networks using only local computations.
We show the substantially greater flexibility of predictive coding networks against equivalent deep neural networks.
arXiv Detail & Related papers (2022-02-18T22:57:03Z) - Multigoal-oriented dual-weighted-residual error estimation using deep
neural networks [0.0]
Deep learning is considered as a powerful tool with high flexibility to approximate functions.
Our approach is based on a posteriori error estimation in which the adjoint problem is solved for the error localization.
An efficient and easy to implement algorithm is developed to obtain a posteriori error estimate for multiple goal functionals.
arXiv Detail & Related papers (2021-12-21T16:59:44Z) - Robustification of Online Graph Exploration Methods [59.50307752165016]
We study a learning-augmented variant of the classical, notoriously hard online graph exploration problem.
We propose an algorithm that naturally integrates predictions into the well-known Nearest Neighbor (NN) algorithm.
arXiv Detail & Related papers (2021-12-10T10:02:31Z) - Convolutional Sparse Coding Fast Approximation with Application to
Seismic Reflectivity Estimation [9.005280130480308]
We propose a speed-up upgraded version of the classic iterative thresholding algorithm, that produces a good approximation of the convolutional sparse code within 2-5 iterations.
The performance of the proposed solution is demonstrated via the seismic inversion problem in both synthetic and real data scenarios.
arXiv Detail & Related papers (2021-06-29T12:19:07Z) - An Empirical Study of Incremental Learning in Neural Network with Noisy
Training Set [0.0]
We numerically show that the accuracy of the algorithm is dependent more on the location of the error than the percentage of error.
Results show that the dependence of the accuracy with the location of error is independent of the algorithm.
arXiv Detail & Related papers (2020-05-07T06:09:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.