Performance Evaluation of Adiabatic Quantum Computation via Quantum
Speed Limits and Possible Applications to Many-Body Systems
- URL: http://arxiv.org/abs/1912.11979v2
- Date: Thu, 16 Jul 2020 02:16:54 GMT
- Title: Performance Evaluation of Adiabatic Quantum Computation via Quantum
Speed Limits and Possible Applications to Many-Body Systems
- Authors: Keisuke Suzuki, Kazutaka Takahashi
- Abstract summary: We find a bound of the fidelity between the adiabatic state and the time-evolved state.
The bound is characterized by the counterdiabatic Hamiltonian.
We derive a different type of quantum speed limits that is meaningful even when we take the thermodynamic limit.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The quantum speed limit specifies a universal bound of the fidelity between
the initial state and the time-evolved state. We apply this method to find a
bound of the fidelity between the adiabatic state and the time-evolved state.
The bound is characterized by the counterdiabatic Hamiltonian and can be used
to evaluate the worst case performance of the adiabatic quantum computation.
The result is improved by imposing additional conditions and we examine several
models to find a tight bound. We also derive a different type of quantum speed
limits that is meaningful even when we take the thermodynamic limit. By using
solvable spin models, we study how the performance and the bound are affected
by phase transitions.
Related papers
- Quantum highway: Observation of minimal and maximal speed limits for few and many-body states [19.181412608418608]
Inspired by the energy-time uncertainty principle, bounds have been demonstrated on the maximal speed at which a quantum state can change.
We show that one can test the known quantum speed limits and that modifying a single Hamiltonian parameter allows the observation of the crossover of the different bounds on the dynamics.
arXiv Detail & Related papers (2024-08-21T18:00:07Z) - Real-time dynamics of false vacuum decay [49.1574468325115]
We investigate false vacuum decay of a relativistic scalar field in the metastable minimum of an asymmetric double-well potential.
We employ the non-perturbative framework of the two-particle irreducible (2PI) quantum effective action at next-to-leading order in a large-N expansion.
arXiv Detail & Related papers (2023-10-06T12:44:48Z) - State Preparation in a Jaynes-Cummings Lattice with Quantum Optimal
Control [2.8063310156671477]
We study a quantum optimal control (QOC) approach for fast generation of quantum ground states in a finite-sized Jaynes-Cummings lattice with unit filling.
Our result shows that the QOC approach can generate quantum many-body states with high fidelity when the evolution time is above a threshold time.
arXiv Detail & Related papers (2023-06-21T01:44:57Z) - Robust Extraction of Thermal Observables from State Sampling and
Real-Time Dynamics on Quantum Computers [49.1574468325115]
We introduce a technique that imposes constraints on the density of states, most notably its non-negativity, and show that this way, we can reliably extract Boltzmann weights from noisy time series.
Our work enables the implementation of the time-series algorithm on present-day quantum computers to study finite temperature properties of many-body quantum systems.
arXiv Detail & Related papers (2023-05-30T18:00:05Z) - Quantum Speed Limit for Change of Basis [55.500409696028626]
We extend the notion of quantum speed limits to collections of quantum states.
For two-qubit systems, we show that the fastest transformation implements two Hadamards and a swap of the qubits simultaneously.
For qutrit systems the evolution time depends on the particular type of the unbiased basis.
arXiv Detail & Related papers (2022-12-23T14:10:13Z) - Speed limits on correlations in bipartite quantum systems [1.3854111346209868]
We derive speed limits on correlations such as entanglement, Bell-CHSH correlation, and quantum mutual information of quantum systems evolving under dynamical processes.
Some of the speed limits we derived are actually attainable and hence these bounds can be considered to be tight.
arXiv Detail & Related papers (2022-07-12T16:23:28Z) - A Quantum Optimal Control Problem with State Constrained Preserving
Coherence [68.8204255655161]
We consider a three-level $Lambda$-type atom subjected to Markovian decoherence characterized by non-unital decoherence channels.
We formulate the quantum optimal control problem with state constraints where the decoherence level remains within a pre-defined bound.
arXiv Detail & Related papers (2022-03-24T21:31:34Z) - The quantum Otto cycle in a superconducting cavity in the non-adiabatic
regime [62.997667081978825]
We analyze the efficiency of the quantum Otto cycle applied to a superconducting cavity.
It is shown that, in a non-adiabatic regime, the efficiency of the quantum cycle is affected by the dynamical Casimir effect.
arXiv Detail & Related papers (2021-11-30T11:47:33Z) - Speed Limits for Macroscopic Transitions [0.0]
We show for the first time that the speed of the expectation value of an observable defined on an arbitrary graph is bounded by the "gradient" of the observable.
Unlike previous bounds, the speed limit decreases when the expectation value of the transition Hamiltonian increases.
arXiv Detail & Related papers (2021-10-19T03:39:51Z) - Time-optimal quantum transformations with bounded bandwidth [0.0]
We derive sharp lower bounds, also known as quantum speed limits, for the time it takes to transform a quantum system into a state.
In a final section, we use the quantum speed limits to obtain upper bounds on the power with which energy can be extracted from quantum batteries.
arXiv Detail & Related papers (2020-11-24T08:42:08Z) - Boundaries of quantum supremacy via random circuit sampling [69.16452769334367]
Google's recent quantum supremacy experiment heralded a transition point where quantum computing performed a computational task, random circuit sampling.
We examine the constraints of the observed quantum runtime advantage in a larger number of qubits and gates.
arXiv Detail & Related papers (2020-05-05T20:11:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.