Speed Limits for Macroscopic Transitions
- URL: http://arxiv.org/abs/2110.09716v3
- Date: Thu, 28 Apr 2022 01:37:01 GMT
- Title: Speed Limits for Macroscopic Transitions
- Authors: Ryusuke Hamazaki
- Abstract summary: We show for the first time that the speed of the expectation value of an observable defined on an arbitrary graph is bounded by the "gradient" of the observable.
Unlike previous bounds, the speed limit decreases when the expectation value of the transition Hamiltonian increases.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Speed of state transitions in macroscopic systems is a crucial concept for
foundations of nonequilibrium statistical mechanics as well as various
applications in quantum technology represented by optimal quantum control.
While extensive studies have made efforts to obtain rigorous constraints on
dynamical processes since Mandelstam and Tamm, speed limits that provide tight
bounds for macroscopic transitions have remained elusive. Here, by employing
the local conservation law of probability, the fundamental principle in
physics, we develop a general framework for deriving qualitatively tighter
speed limits for macroscopic systems than many conventional ones. We show for
the first time that the speed of the expectation value of an observable defined
on an arbitrary graph, which can describe general many-body systems, is bounded
by the "gradient" of the observable, in contrast with conventional speed limits
depending on the entire range of the observable. This framework enables us to
derive novel quantum speed limits for macroscopic unitary dynamics. Unlike
previous bounds, the speed limit decreases when the expectation value of the
transition Hamiltonian increases; this intuitively describes a new tradeoff
relation between time and quantum phase difference. Our bound is dependent on
instantaneous quantum states and thus can achieve the equality condition, which
is conceptually distinct from the Lieb-Robinson bound. Our work elucidates
novel speed limits on the basis of local conservation law, providing
fundamental limits to various types of nonequilibrium quantum macroscopic
phenomena.
Related papers
- Quantum highway: Observation of minimal and maximal speed limits for few and many-body states [19.181412608418608]
Inspired by the energy-time uncertainty principle, bounds have been demonstrated on the maximal speed at which a quantum state can change.
We show that one can test the known quantum speed limits and that modifying a single Hamiltonian parameter allows the observation of the crossover of the different bounds on the dynamics.
arXiv Detail & Related papers (2024-08-21T18:00:07Z) - Quantum Speed Limit for Change of Basis [55.500409696028626]
We extend the notion of quantum speed limits to collections of quantum states.
For two-qubit systems, we show that the fastest transformation implements two Hadamards and a swap of the qubits simultaneously.
For qutrit systems the evolution time depends on the particular type of the unbiased basis.
arXiv Detail & Related papers (2022-12-23T14:10:13Z) - Quantum Speed Limit From Tighter Uncertainty Relation [0.0]
We prove a new quantum speed limit using the tighter uncertainty relations for pure quantum systems undergoing arbitrary unitary evolution.
We show that the MT bound is a special case of the tighter quantum speed limit derived here.
We illustrate the tighter speed limit for pure states with examples using random Hamiltonians and show that the new quantum speed limit outperforms the MT bound.
arXiv Detail & Related papers (2022-11-26T13:14:58Z) - Speed limits on correlations in bipartite quantum systems [1.3854111346209868]
We derive speed limits on correlations such as entanglement, Bell-CHSH correlation, and quantum mutual information of quantum systems evolving under dynamical processes.
Some of the speed limits we derived are actually attainable and hence these bounds can be considered to be tight.
arXiv Detail & Related papers (2022-07-12T16:23:28Z) - Role of boundary conditions in the full counting statistics of
topological defects after crossing a continuous phase transition [62.997667081978825]
We analyze the role of boundary conditions in the statistics of topological defects.
We show that for fast and moderate quenches, the cumulants of the kink number distribution present a universal scaling with the quench rate.
arXiv Detail & Related papers (2022-07-08T09:55:05Z) - Demonstrating Quantum Microscopic Reversibility Using Coherent States of
Light [58.8645797643406]
We propose and experimentally test a quantum generalization of the microscopic reversibility when a quantum system interacts with a heat bath.
We verify that the quantum modification for the principle of microscopic reversibility is critical in the low-temperature limit.
arXiv Detail & Related papers (2022-05-26T00:25:29Z) - Optimal bounds on the speed of subspace evolution [77.34726150561087]
In contrast to the basic Mandelstam-Tamm inequality, we are concerned with a subspace subject to the Schroedinger evolution.
By using the concept of maximal angle between subspaces we derive optimal bounds on the speed of such a subspace evolution.
These bounds may be viewed as further generalizations of the Mandelstam-Tamm inequality.
arXiv Detail & Related papers (2021-11-10T13:32:15Z) - Unifying Quantum and Classical Speed Limits on Observables [0.0]
We derive a bound on the speed with which observables of open quantum systems evolve.
By isolating the coherent and incoherent contributions to the system dynamics, we derive both lower and upper bounds to the speed of evolution.
arXiv Detail & Related papers (2021-08-09T18:00:08Z) - Non-equilibrium stationary states of quantum non-Hermitian lattice
models [68.8204255655161]
We show how generic non-Hermitian tight-binding lattice models can be realized in an unconditional, quantum-mechanically consistent manner.
We focus on the quantum steady states of such models for both fermionic and bosonic systems.
arXiv Detail & Related papers (2021-03-02T18:56:44Z) - Quantum speed limits for time evolution of a system subspace [77.34726150561087]
In the present work, we are concerned not with a single state but with a whole (possibly infinite-dimensional) subspace of the system states that are subject to the Schroedinger evolution.
We derive an optimal estimate on the speed of such a subspace evolution that may be viewed as a natural generalization of the Fleming bound.
arXiv Detail & Related papers (2020-11-05T12:13:18Z) - Operational definition of a quantum speed limit [8.987823293206912]
The quantum speed limit is a fundamental concept in quantum mechanics, which aims at finding the minimum time scale or the maximum dynamical speed for some fixed targets.
Here we provide an operational approach for the definition of the quantum speed limit, which utilizes the set of states that can fulfill the target to define the speed limit.
arXiv Detail & Related papers (2020-02-25T12:32:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.