Quantum highway: Observation of minimal and maximal speed limits for few and many-body states
- URL: http://arxiv.org/abs/2408.11900v1
- Date: Wed, 21 Aug 2024 18:00:07 GMT
- Title: Quantum highway: Observation of minimal and maximal speed limits for few and many-body states
- Authors: Zitian Zhu, Lei Gao, Zehang Bao, Liang Xiang, Zixuan Song, Shibo Xu, Ke Wang, Jiachen Chen, Feitong Jin, Xuhao Zhu, Yu Gao, Yaozu Wu, Chuanyu Zhang, Ning Wang, Yiren Zou, Ziqi Tan, Aosai Zhang, Zhengyi Cui, Fanhao Shen, Jiarun Zhong, Tingting Li, Jinfeng Deng, Xu Zhang, Hang Dong, Pengfei Zhang, Zhen Wang, Chao Song, Chen Cheng, Qiujiang Guo, Hekang Li, H. Wang, Haiqing Lin, Rubem Mondaini,
- Abstract summary: Inspired by the energy-time uncertainty principle, bounds have been demonstrated on the maximal speed at which a quantum state can change.
We show that one can test the known quantum speed limits and that modifying a single Hamiltonian parameter allows the observation of the crossover of the different bounds on the dynamics.
- Score: 19.181412608418608
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Tracking the time evolution of a quantum state allows one to verify the thermalization rate or the propagation speed of correlations in generic quantum systems. Inspired by the energy-time uncertainty principle, bounds have been demonstrated on the maximal speed at which a quantum state can change, resulting in immediate and practical tasks. Based on a programmable superconducting quantum processor, we test the dynamics of various emulated quantum mechanical systems encompassing single- and many-body states. We show that one can test the known quantum speed limits and that modifying a single Hamiltonian parameter allows the observation of the crossover of the different bounds on the dynamics. We also unveil the observation of minimal quantum speed limits in addition to more common maximal ones, i.e., the lowest rate of change of a unitarily evolved quantum state. Our results establish a comprehensive experimental characterization of quantum speed limits and pave the way for their subsequent study in engineered non-unitary conditions.
Related papers
- On Propagation of Information in Quantum Mechanics and Maximal Velocity Bounds [1.3812010983144802]
We prove uniform bounds on the maximal speed of propagation of quantum information for states and observables with exponential error bounds.
Our results imply a quantum mechanical version of the Lieb-Robinson bound, which is known to yield various constraints on propagation of quantum information.
arXiv Detail & Related papers (2024-09-02T21:39:44Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Quantum Speed Limit for Change of Basis [55.500409696028626]
We extend the notion of quantum speed limits to collections of quantum states.
For two-qubit systems, we show that the fastest transformation implements two Hadamards and a swap of the qubits simultaneously.
For qutrit systems the evolution time depends on the particular type of the unbiased basis.
arXiv Detail & Related papers (2022-12-23T14:10:13Z) - Quantum Speed Limit From Tighter Uncertainty Relation [0.0]
We prove a new quantum speed limit using the tighter uncertainty relations for pure quantum systems undergoing arbitrary unitary evolution.
We show that the MT bound is a special case of the tighter quantum speed limit derived here.
We illustrate the tighter speed limit for pure states with examples using random Hamiltonians and show that the new quantum speed limit outperforms the MT bound.
arXiv Detail & Related papers (2022-11-26T13:14:58Z) - Speed limits on correlations in bipartite quantum systems [1.3854111346209868]
We derive speed limits on correlations such as entanglement, Bell-CHSH correlation, and quantum mutual information of quantum systems evolving under dynamical processes.
Some of the speed limits we derived are actually attainable and hence these bounds can be considered to be tight.
arXiv Detail & Related papers (2022-07-12T16:23:28Z) - Demonstrating Quantum Microscopic Reversibility Using Coherent States of
Light [58.8645797643406]
We propose and experimentally test a quantum generalization of the microscopic reversibility when a quantum system interacts with a heat bath.
We verify that the quantum modification for the principle of microscopic reversibility is critical in the low-temperature limit.
arXiv Detail & Related papers (2022-05-26T00:25:29Z) - Speed Limits for Macroscopic Transitions [0.0]
We show for the first time that the speed of the expectation value of an observable defined on an arbitrary graph is bounded by the "gradient" of the observable.
Unlike previous bounds, the speed limit decreases when the expectation value of the transition Hamiltonian increases.
arXiv Detail & Related papers (2021-10-19T03:39:51Z) - Observing crossover between quantum speed limits [0.0]
Two well-known quantum speed limits are the Mandelstam-Tamm and the Margolus-Levitin bounds.
Here, we test concurrently both limits in a multi-level system by following the motion of a single atom in an optical trap.
Our data reveal two different regimes: one where the Mandelstam-Tamm limit constrains the evolution at all times, and a second where a crossover to the Margolus-Levitin limit is manifested at longer times.
arXiv Detail & Related papers (2021-04-12T17:01:47Z) - Imaginary Time Propagation on a Quantum Chip [50.591267188664666]
Evolution in imaginary time is a prominent technique for finding the ground state of quantum many-body systems.
We propose an algorithm to implement imaginary time propagation on a quantum computer.
arXiv Detail & Related papers (2021-02-24T12:48:00Z) - Direct Quantum Communications in the Presence of Realistic Noisy
Entanglement [69.25543534545538]
We propose a novel quantum communication scheme relying on realistic noisy pre-shared entanglement.
Our performance analysis shows that the proposed scheme offers competitive QBER, yield, and goodput.
arXiv Detail & Related papers (2020-12-22T13:06:12Z) - Boundaries of quantum supremacy via random circuit sampling [69.16452769334367]
Google's recent quantum supremacy experiment heralded a transition point where quantum computing performed a computational task, random circuit sampling.
We examine the constraints of the observed quantum runtime advantage in a larger number of qubits and gates.
arXiv Detail & Related papers (2020-05-05T20:11:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.