Detecting Out-of-Distribution Examples with In-distribution Examples and
Gram Matrices
- URL: http://arxiv.org/abs/1912.12510v2
- Date: Thu, 9 Jan 2020 15:17:55 GMT
- Title: Detecting Out-of-Distribution Examples with In-distribution Examples and
Gram Matrices
- Authors: Chandramouli Shama Sastry, Sageev Oore
- Abstract summary: Deep neural networks yield confident, incorrect predictions when presented with Out-of-Distribution examples.
In this paper, we propose to detect OOD examples by identifying inconsistencies between activity patterns and class predicted.
We find that characterizing activity patterns by Gram matrices and identifying anomalies in gram matrix values can yield high OOD detection rates.
- Score: 8.611328447624679
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: When presented with Out-of-Distribution (OOD) examples, deep neural networks
yield confident, incorrect predictions. Detecting OOD examples is challenging,
and the potential risks are high. In this paper, we propose to detect OOD
examples by identifying inconsistencies between activity patterns and class
predicted. We find that characterizing activity patterns by Gram matrices and
identifying anomalies in gram matrix values can yield high OOD detection rates.
We identify anomalies in the gram matrices by simply comparing each value with
its respective range observed over the training data. Unlike many approaches,
this can be used with any pre-trained softmax classifier and does not require
access to OOD data for fine-tuning hyperparameters, nor does it require OOD
access for inferring parameters. The method is applicable across a variety of
architectures and vision datasets and, for the important and surprisingly hard
task of detecting far-from-distribution out-of-distribution examples, it
generally performs better than or equal to state-of-the-art OOD detection
methods (including those that do assume access to OOD examples).
Related papers
- Going Beyond Conventional OOD Detection [0.0]
Out-of-distribution (OOD) detection is critical to ensure the safe deployment of deep learning models in critical applications.
We present a unified Approach to Spurimatious, fine-grained, and Conventional OOD Detection (ASCOOD)
Our approach effectively mitigates the impact of spurious correlations and encourages capturing fine-grained attributes.
arXiv Detail & Related papers (2024-11-16T13:04:52Z) - Resultant: Incremental Effectiveness on Likelihood for Unsupervised Out-of-Distribution Detection [63.93728560200819]
Unsupervised out-of-distribution (U-OOD) detection is to identify data samples with a detector trained solely on unlabeled in-distribution (ID) data.
Recent studies have developed various detectors based on DGMs to move beyond likelihood.
We apply two techniques for each direction, specifically post-hoc prior and dataset entropy-mutual calibration.
Experimental results demonstrate that the Resultant could be a new state-of-the-art U-OOD detector.
arXiv Detail & Related papers (2024-09-05T02:58:13Z) - EAT: Towards Long-Tailed Out-of-Distribution Detection [55.380390767978554]
This paper addresses the challenging task of long-tailed OOD detection.
The main difficulty lies in distinguishing OOD data from samples belonging to the tail classes.
We propose two simple ideas: (1) Expanding the in-distribution class space by introducing multiple abstention classes, and (2) Augmenting the context-limited tail classes by overlaying images onto the context-rich OOD data.
arXiv Detail & Related papers (2023-12-14T13:47:13Z) - Out-of-distribution Detection Learning with Unreliable
Out-of-distribution Sources [73.28967478098107]
Out-of-distribution (OOD) detection discerns OOD data where the predictor cannot make valid predictions as in-distribution (ID) data.
It is typically hard to collect real out-of-distribution (OOD) data for training a predictor capable of discerning OOD patterns.
We propose a data generation-based learning method named Auxiliary Task-based OOD Learning (ATOL) that can relieve the mistaken OOD generation.
arXiv Detail & Related papers (2023-11-06T16:26:52Z) - Unleashing Mask: Explore the Intrinsic Out-of-Distribution Detection
Capability [70.72426887518517]
Out-of-distribution (OOD) detection is an indispensable aspect of secure AI when deploying machine learning models in real-world applications.
We propose a novel method, Unleashing Mask, which aims to restore the OOD discriminative capabilities of the well-trained model with ID data.
Our method utilizes a mask to figure out the memorized atypical samples, and then finetune the model or prune it with the introduced mask to forget them.
arXiv Detail & Related papers (2023-06-06T14:23:34Z) - Detecting Out-of-distribution Examples via Class-conditional Impressions
Reappearing [30.938412222724608]
Out-of-distribution (OOD) detection aims at enhancing standard deep neural networks to distinguish anomalous inputs from original training data.
Due to privacy and security, auxiliary data tends to be impractical in a real-world scenario.
We propose a data-free method without training on natural data, called Class-Conditional Impressions Reappearing (C2IR)
arXiv Detail & Related papers (2023-03-17T02:55:08Z) - GOOD-D: On Unsupervised Graph Out-Of-Distribution Detection [67.90365841083951]
We develop a new graph contrastive learning framework GOOD-D for detecting OOD graphs without using any ground-truth labels.
GOOD-D is able to capture the latent ID patterns and accurately detect OOD graphs based on the semantic inconsistency in different granularities.
As a pioneering work in unsupervised graph-level OOD detection, we build a comprehensive benchmark to compare our proposed approach with different state-of-the-art methods.
arXiv Detail & Related papers (2022-11-08T12:41:58Z) - Igeood: An Information Geometry Approach to Out-of-Distribution
Detection [35.04325145919005]
We introduce Igeood, an effective method for detecting out-of-distribution (OOD) samples.
Igeood applies to any pre-trained neural network, works under various degrees of access to the machine learning model.
We show that Igeood outperforms competing state-of-the-art methods on a variety of network architectures and datasets.
arXiv Detail & Related papers (2022-03-15T11:26:35Z) - Training OOD Detectors in their Natural Habitats [31.565635192716712]
Out-of-distribution (OOD) detection is important for machine learning models deployed in the wild.
Recent methods use auxiliary outlier data to regularize the model for improved OOD detection.
We propose a novel framework that leverages wild mixture data -- that naturally consists of both ID and OOD samples.
arXiv Detail & Related papers (2022-02-07T15:38:39Z) - Learn what you can't learn: Regularized Ensembles for Transductive
Out-of-distribution Detection [76.39067237772286]
We show that current out-of-distribution (OOD) detection algorithms for neural networks produce unsatisfactory results in a variety of OOD detection scenarios.
This paper studies how such "hard" OOD scenarios can benefit from adjusting the detection method after observing a batch of the test data.
We propose a novel method that uses an artificial labeling scheme for the test data and regularization to obtain ensembles of models that produce contradictory predictions only on the OOD samples in a test batch.
arXiv Detail & Related papers (2020-12-10T16:55:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.