Resultant: Incremental Effectiveness on Likelihood for Unsupervised Out-of-Distribution Detection
- URL: http://arxiv.org/abs/2409.03801v1
- Date: Thu, 5 Sep 2024 02:58:13 GMT
- Title: Resultant: Incremental Effectiveness on Likelihood for Unsupervised Out-of-Distribution Detection
- Authors: Yewen Li, Chaojie Wang, Xiaobo Xia, Xu He, Ruyi An, Dong Li, Tongliang Liu, Bo An, Xinrun Wang,
- Abstract summary: Unsupervised out-of-distribution (U-OOD) detection is to identify data samples with a detector trained solely on unlabeled in-distribution (ID) data.
Recent studies have developed various detectors based on DGMs to move beyond likelihood.
We apply two techniques for each direction, specifically post-hoc prior and dataset entropy-mutual calibration.
Experimental results demonstrate that the Resultant could be a new state-of-the-art U-OOD detector.
- Score: 63.93728560200819
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Unsupervised out-of-distribution (U-OOD) detection is to identify OOD data samples with a detector trained solely on unlabeled in-distribution (ID) data. The likelihood function estimated by a deep generative model (DGM) could be a natural detector, but its performance is limited in some popular "hard" benchmarks, such as FashionMNIST (ID) vs. MNIST (OOD). Recent studies have developed various detectors based on DGMs to move beyond likelihood. However, despite their success on "hard" benchmarks, most of them struggle to consistently surpass or match the performance of likelihood on some "non-hard" cases, such as SVHN (ID) vs. CIFAR10 (OOD) where likelihood could be a nearly perfect detector. Therefore, we appeal for more attention to incremental effectiveness on likelihood, i.e., whether a method could always surpass or at least match the performance of likelihood in U-OOD detection. We first investigate the likelihood of variational DGMs and find its detection performance could be improved in two directions: i) alleviating latent distribution mismatch, and ii) calibrating the dataset entropy-mutual integration. Then, we apply two techniques for each direction, specifically post-hoc prior and dataset entropy-mutual calibration. The final method, named Resultant, combines these two directions for better incremental effectiveness compared to either technique alone. Experimental results demonstrate that the Resultant could be a new state-of-the-art U-OOD detector while maintaining incremental effectiveness on likelihood in a wide range of tasks.
Related papers
- What If the Input is Expanded in OOD Detection? [77.37433624869857]
Out-of-distribution (OOD) detection aims to identify OOD inputs from unknown classes.
Various scoring functions are proposed to distinguish it from in-distribution (ID) data.
We introduce a novel perspective, i.e., employing different common corruptions on the input space.
arXiv Detail & Related papers (2024-10-24T06:47:28Z) - Margin-bounded Confidence Scores for Out-of-Distribution Detection [2.373572816573706]
We propose a novel method called Margin bounded Confidence Scores (MaCS) to address the nontrivial OOD detection problem.
MaCS enlarges the disparity between ID and OOD scores, which in turn makes the decision boundary more compact.
Experiments on various benchmark datasets for image classification tasks demonstrate the effectiveness of the proposed method.
arXiv Detail & Related papers (2024-09-22T05:40:25Z) - A Geometric Explanation of the Likelihood OOD Detection Paradox [19.205693812937422]
We show that high-likelihood regions will not be generated if they contain minimal probability mass.
We propose a method for OOD detection which pairs the likelihoods and LID estimates obtained from a pre-trained DGM.
arXiv Detail & Related papers (2024-03-27T18:02:49Z) - CADet: Fully Self-Supervised Out-Of-Distribution Detection With
Contrastive Learning [11.897976063005315]
This work explores the use of self-supervised contrastive learning to the simultaneous detection of two types of OOD samples.
First, we pair self-supervised contrastive learning with the maximum mean discrepancy (MMD) two-sample test.
Motivated by this success, we introduce CADet, a novel method for OOD detection of single samples.
arXiv Detail & Related papers (2022-10-04T17:02:37Z) - Benchmarking Deep Models for Salient Object Detection [67.07247772280212]
We construct a general SALient Object Detection (SALOD) benchmark to conduct a comprehensive comparison among several representative SOD methods.
In the above experiments, we find that existing loss functions usually specialized in some metrics but reported inferior results on the others.
We propose a novel Edge-Aware (EA) loss that promotes deep networks to learn more discriminative features by integrating both pixel- and image-level supervision signals.
arXiv Detail & Related papers (2022-02-07T03:43:16Z) - Exploring Covariate and Concept Shift for Detection and Calibration of
Out-of-Distribution Data [77.27338842609153]
characterization reveals that sensitivity to each type of shift is important to the detection and confidence calibration of OOD data.
We propose a geometrically-inspired method to improve OOD detection under both shifts with only in-distribution data.
We are the first to propose a method that works well across both OOD detection and calibration and under different types of shifts.
arXiv Detail & Related papers (2021-10-28T15:42:55Z) - Learn what you can't learn: Regularized Ensembles for Transductive
Out-of-distribution Detection [76.39067237772286]
We show that current out-of-distribution (OOD) detection algorithms for neural networks produce unsatisfactory results in a variety of OOD detection scenarios.
This paper studies how such "hard" OOD scenarios can benefit from adjusting the detection method after observing a batch of the test data.
We propose a novel method that uses an artificial labeling scheme for the test data and regularization to obtain ensembles of models that produce contradictory predictions only on the OOD samples in a test batch.
arXiv Detail & Related papers (2020-12-10T16:55:13Z) - Robust Out-of-distribution Detection for Neural Networks [51.19164318924997]
We show that existing detection mechanisms can be extremely brittle when evaluating on in-distribution and OOD inputs.
We propose an effective algorithm called ALOE, which performs robust training by exposing the model to both adversarially crafted inlier and outlier examples.
arXiv Detail & Related papers (2020-03-21T17:46:28Z) - RCC-Dual-GAN: An Efficient Approach for Outlier Detection with Few
Identified Anomalies [11.02452262854759]
Outlier detection is an important task in data mining and many technologies have been explored in various applications.
We propose a novel detection model Dual-GAN, which can directly utilize the potential information in identified anomalies to detect discrete outliers simultaneously.
In addition, to deal with the evaluation of Nash equilibrium and the selection of optimal model, two evaluation indicators are created and introduced into the two models to make the detection process more intelligent.
arXiv Detail & Related papers (2020-03-07T17:13:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.