論文の概要: Characteristic Regularisation for Super-Resolving Face Images
- arxiv url: http://arxiv.org/abs/1912.12987v1
- Date: Mon, 30 Dec 2019 16:27:24 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-17 02:41:55.188378
- Title: Characteristic Regularisation for Super-Resolving Face Images
- Title(参考訳): 超解像顔画像の特徴正規化
- Authors: Zhiyi Cheng, Xiatian Zhu, Shaogang Gong
- Abstract要約: 既存の顔画像超解像法(SR)は、主に人工的にダウンサンプリングされた低解像度(LR)画像の改善に焦点を当てている。
従来の非教師なしドメイン適応(UDA)手法は、未ペアの真のLRとHRデータを用いてモデルをトレーニングすることでこの問題に対処する。
これにより、視覚的特徴を構成することと、画像の解像度を高めることの2つのタスクで、モデルをオーバーストレッチする。
従来のSRモデルとUDAモデルの利点を結合する手法を定式化する。
- 参考スコア(独自算出の注目度): 81.84939112201377
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Existing facial image super-resolution (SR) methods focus mostly on improving
artificially down-sampled low-resolution (LR) imagery. Such SR models, although
strong at handling artificial LR images, often suffer from significant
performance drop on genuine LR test data. Previous unsupervised domain
adaptation (UDA) methods address this issue by training a model using unpaired
genuine LR and HR data as well as cycle consistency loss formulation. However,
this renders the model overstretched with two tasks: consistifying the visual
characteristics and enhancing the image resolution. Importantly, this makes the
end-to-end model training ineffective due to the difficulty of back-propagating
gradients through two concatenated CNNs. To solve this problem, we formulate a
method that joins the advantages of conventional SR and UDA models.
Specifically, we separate and control the optimisations for characteristics
consistifying and image super-resolving by introducing Characteristic
Regularisation (CR) between them. This task split makes the model training more
effective and computationally tractable. Extensive evaluations demonstrate the
performance superiority of our method over state-of-the-art SR and UDA models
on both genuine and artificial LR facial imagery data.
- Abstract(参考訳): 既存の顔画像超解像法(SR)は、主に人工的にダウンサンプリングされた低解像度(LR)画像の改善に焦点を当てている。
このようなSRモデルは、人工LR画像の処理に長けているが、真のLRテストデータに対する大きな性能低下に悩まされることが多い。
従来の非教師なしドメイン適応(UDA)手法は、未ペアの真のLRとHRデータとサイクル整合損失の定式化を用いてモデルをトレーニングすることでこの問題に対処する。
しかし、このモデルでは、視覚特性の構成と解像度向上という2つのタスクがオーバーストレッチされている。
重要なことに、エンドツーエンドモデルのトレーニングは、2つの連結cnnによる逆伝播勾配の難しさのために効果がない。
この問題を解決するために、従来のSRモデルとUDAモデルの利点を結合する手法を定式化する。
具体的には,特徴分担と画像超解像の最適化を分離制御し,特徴分担(CR)を導入する。
このタスク分割により、モデルトレーニングはより効果的で、計算的に抽出できる。
実画像データと人工顔画像データの両方において,最先端のSRモデルとUDAモデルよりも優れた性能を示す。
関連論文リスト
- Enhanced Super-Resolution Training via Mimicked Alignment for Real-World Scenes [51.92255321684027]
トレーニング中、LR入力とHR画像の整列により、誤調整問題を緩和する新しいプラグアンドプレイモジュールを提案する。
具体的には,従来のLR試料の特徴を保ちながらHRと整合する新しいLR試料を模倣する。
本手法を合成および実世界のデータセット上で総合的に評価し,SRモデルのスペクトル間での有効性を実証した。
論文 参考訳(メタデータ) (2024-10-07T18:18:54Z) - Degradation-Guided One-Step Image Super-Resolution with Diffusion Priors [75.24313405671433]
拡散に基づく画像超解像法 (SR) は、事前訓練された大規模なテキスト・画像拡散モデルを先行として活用することにより、顕著な成功を収めた。
本稿では,拡散型SR手法の効率問題に対処する新しい一段階SRモデルを提案する。
既存の微調整戦略とは異なり、SR専用の劣化誘導低ランク適応 (LoRA) モジュールを設計した。
論文 参考訳(メタデータ) (2024-09-25T16:15:21Z) - One Model for Two Tasks: Cooperatively Recognizing and Recovering Low-Resolution Scene Text Images by Iterative Mutual Guidance [32.88048472109016]
高分解能(HR)画像からのシーンテキスト認識(STR)は著しく成功したが、低分解能(LR)画像でのテキスト読取は依然として困難である。
近年,多くのシーンテキスト画像超解像(STISR)モデルがLR画像の超解像(SR)画像を生成するために提案され,SR画像上でSTRが実行されることにより認識性能が向上した。
本稿では,LRシーンのテキスト画像の同時認識と復元を効果的に行う,画像と呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2024-09-22T15:05:25Z) - Efficient Test-Time Adaptation for Super-Resolution with Second-Order
Degradation and Reconstruction [62.955327005837475]
画像超解像(SR)は,低分解能(LR)から高分解能(HR)へのマッピングを,一対のHR-LRトレーニング画像を用いて学習することを目的としている。
SRTTAと呼ばれるSRの効率的なテスト時間適応フレームワークを提案し、SRモデルを異なる/未知の劣化型でテストドメインに迅速に適応させることができる。
論文 参考訳(メタデータ) (2023-10-29T13:58:57Z) - Learning Many-to-Many Mapping for Unpaired Real-World Image
Super-resolution and Downscaling [60.80788144261183]
実世界のLR画像とHR画像の双方向多対多マッピングを教師なしで同時に学習するSDFlowと呼ばれる画像ダウンスケーリングとSRモデルを提案する。
実世界の画像SRデータセットによる実験結果から,SDFlowは定量的かつ定性的に,多様な現実的なLRとSRの画像を生成可能であることが示唆された。
論文 参考訳(メタデータ) (2023-10-08T01:48:34Z) - Real Image Super-Resolution using GAN through modeling of LR and HR
process [20.537597542144916]
LRモデルとSRモデルに組み込んだ学習可能な適応正弦波非線形性を提案し,分解分布を直接学習する。
定量的および定性的な実験において提案手法の有効性を実証する。
論文 参考訳(メタデータ) (2022-10-19T09:23:37Z) - Real-World Super-Resolution of Face-Images from Surveillance Cameras [25.258587196435464]
本稿では,現実的なLR/HRトレーニングペアを生成するための新しいフレームワークを提案する。
本フレームワークは、実写のぼやけたカーネル、ノイズ分布、JPEG圧縮アーチファクトを推定し、ソース領域のものと類似した画像特性を持つLR画像を生成する。
我々はGANベースのSRモデルを用いて、よく使われるVGG-loss[24]とLPIPS-loss[52]を交換した。
論文 参考訳(メタデータ) (2021-02-05T11:38:30Z) - Joint Generative Learning and Super-Resolution For Real-World
Camera-Screen Degradation [6.14297871633911]
現実世界の単一画像超解像(SISR)タスクでは、低解像度画像はより複雑な劣化に苦しむ。
本稿では,カメラ画面の劣化に着目し,実世界のデータセット(Cam-ScreenSR)を構築する。
まず、ダウンサンプリング劣化GAN(DD-GAN)をトレーニングし、その分解をモデル化し、より多様なLR画像を生成する。
そして、二重残差チャネルアテンションネットワーク(DuRCAN)がSR画像の復元を学習する。
論文 参考訳(メタデータ) (2020-08-01T07:10:13Z) - DDet: Dual-path Dynamic Enhancement Network for Real-World Image
Super-Resolution [69.2432352477966]
実画像超解像(Real-SR)は、実世界の高分解能画像(HR)と低分解能画像(LR)の関係に焦点を当てている。
本稿では,Real-SRのためのデュアルパス動的拡張ネットワーク(DDet)を提案する。
特徴表現のための大規模な畳み込みブロックを積み重ねる従来の手法とは異なり、非一貫性のある画像対を研究するためのコンテンツ認識フレームワークを導入する。
論文 参考訳(メタデータ) (2020-02-25T18:24:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。