論文の概要: Real Image Super-Resolution using GAN through modeling of LR and HR
process
- arxiv url: http://arxiv.org/abs/2210.10413v1
- Date: Wed, 19 Oct 2022 09:23:37 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-20 15:22:06.145604
- Title: Real Image Super-Resolution using GAN through modeling of LR and HR
process
- Title(参考訳): LRおよびHRプロセスのモデリングによるGANを用いた実像超解像
- Authors: Rao Muhammad Umer, Christian Micheloni
- Abstract要約: LRモデルとSRモデルに組み込んだ学習可能な適応正弦波非線形性を提案し,分解分布を直接学習する。
定量的および定性的な実験において提案手法の有効性を実証する。
- 参考スコア(独自算出の注目度): 20.537597542144916
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The current existing deep image super-resolution methods usually assume that
a Low Resolution (LR) image is bicubicly downscaled of a High Resolution (HR)
image. However, such an ideal bicubic downsampling process is different from
the real LR degradations, which usually come from complicated combinations of
different degradation processes, such as camera blur, sensor noise, sharpening
artifacts, JPEG compression, and further image editing, and several times image
transmission over the internet and unpredictable noises. It leads to the highly
ill-posed nature of the inverse upscaling problem. To address these issues, we
propose a GAN-based SR approach with learnable adaptive sinusoidal
nonlinearities incorporated in LR and SR models by directly learn degradation
distributions and then synthesize paired LR/HR training data to train the
generalized SR model to real image degradations. We demonstrate the
effectiveness of our proposed approach in quantitative and qualitative
experiments.
- Abstract(参考訳): 現在のディープ・イメージの超解像法は、通常、低分解能(LR)画像が高分解能(HR)画像の双対ダウンスケールであると仮定する。
しかし、このような理想的なbicubicダウンサンプリングプロセスは、カメラのぼやき、センサーノイズ、シャープニングアーティファクト、jpeg圧縮、さらに画像編集といった異なる分解過程の複雑な組み合わせや、インターネット上の画像伝送や予測不能なノイズから生じる実際のlr劣化とは異なる。
これは逆拡大問題の非常に不適切な性質をもたらす。
これらの問題に対処するために, LR と SR モデルに組み込まれた適応正弦波非線形性を持つ GAN ベースの SR 手法を提案し, 直接分解分布を学習し, 一般化された SR モデルを実画像劣化に訓練するためのペア付き LR/HR トレーニングデータを合成する。
定量的および定性的実験において提案手法の有効性を示す。
関連論文リスト
- Enhancing Image Rescaling using Dual Latent Variables in Invertible
Neural Network [42.18106162158025]
画像ダウンスケーリングプロセスのバリエーションをモデル化するために、新しいダウンスケーリング潜在変数が導入された。
これにより、ダウンスケールのLR画像の画質を犠牲にすることなく、画像のアップスケーリング精度を一貫して向上させることができる。
また、画像隠蔽のような画像復元アプリケーションのための他の INN ベースのモデルの拡張にも有効であることが示されている。
論文 参考訳(メタデータ) (2022-07-24T23:12:51Z) - Toward Real-world Image Super-resolution via Hardware-based Adaptive
Degradation Models [3.9037347042028254]
ほとんどの単一画像超解像法は、合成低分解能(LR)と高分解能(HR)画像対上で開発されている。
ハードウェアの知識を取り入れた未知の劣化過程をシミュレートする新しい教師付き手法を提案する。
実世界のデータセットを用いた実験により,我々の劣化モデルが所定の劣化操作よりも精度良くLR画像を推定できることが確認された。
論文 参考訳(メタデータ) (2021-10-20T19:53:48Z) - Toward Real-World Super-Resolution via Adaptive Downsampling Models [58.38683820192415]
本研究では,制約のある事前知識を伴わずに未知のサンプル処理をシミュレートする手法を提案する。
対の例を使わずに対象LR画像の分布を模倣する汎用化可能な低周波損失(LFL)を提案する。
論文 参考訳(メタデータ) (2021-09-08T06:00:32Z) - Hierarchical Conditional Flow: A Unified Framework for Image
Super-Resolution and Image Rescaling [139.25215100378284]
画像SRと画像再スケーリングのための統合フレームワークとして階層的条件フロー(HCFlow)を提案する。
HCFlowは、LR画像と残りの高周波成分の分布を同時にモデル化することにより、HRとLR画像ペア間のマッピングを学習する。
さらに性能を高めるために、知覚的損失やGAN損失などの他の損失と、トレーニングで一般的に使用される負の対数類似損失とを組み合わせる。
論文 参考訳(メタデータ) (2021-08-11T16:11:01Z) - Designing a Practical Degradation Model for Deep Blind Image
Super-Resolution [134.9023380383406]
単一画像スーパーレゾリューション (sisr) 法は, 推定劣化モデルが実画像から逸脱した場合はうまく動作しない。
本稿では, ランダムにシャッフルされたブラー, ダウンサンプリング, ノイズ劣化からなる, より複雑で実用的な劣化モデルを提案する。
論文 参考訳(メタデータ) (2021-03-25T17:40:53Z) - Real-World Super-Resolution of Face-Images from Surveillance Cameras [25.258587196435464]
本稿では,現実的なLR/HRトレーニングペアを生成するための新しいフレームワークを提案する。
本フレームワークは、実写のぼやけたカーネル、ノイズ分布、JPEG圧縮アーチファクトを推定し、ソース領域のものと類似した画像特性を持つLR画像を生成する。
我々はGANベースのSRモデルを用いて、よく使われるVGG-loss[24]とLPIPS-loss[52]を交換した。
論文 参考訳(メタデータ) (2021-02-05T11:38:30Z) - Frequency Consistent Adaptation for Real World Super Resolution [64.91914552787668]
実シーンにスーパーリゾリューション(SR)法を適用する際に周波数領域の整合性を保証する新しい周波数一貫性適応(FCA)を提案する。
監視されていない画像から劣化カーネルを推定し、対応するLow-Resolution (LR)画像を生成する。
ドメイン一貫性のあるLR-HRペアに基づいて、容易に実装可能な畳み込みニューラルネットワーク(CNN)SRモデルを訓練する。
論文 参考訳(メタデータ) (2020-12-18T08:25:39Z) - Super-Resolution of Real-World Faces [3.4376560669160394]
実の低解像度 (LR) の顔画像は、変わらず複雑で既知のダウンサンプリングカーネルによってキャプチャされる劣化を含んでいる。
本稿では,特徴抽出モジュールがLR画像からロバストな特徴を抽出する2つのモジュール超解像ネットワークを提案する。
我々は、劣化GANを訓練し、双対的に縮小されたクリーン画像を実際の劣化画像に変換し、得られた劣化LR画像と、そのクリーンLR画像とを補間する。
論文 参考訳(メタデータ) (2020-11-04T17:25:54Z) - Deep Generative Adversarial Residual Convolutional Networks for
Real-World Super-Resolution [31.934084942626257]
我々は,超解像残差畳み込み生成共役ネットワーク(SRResCGAN)を提案する。
これは、生成したLRドメインからHRドメインの画素単位の監督でモデルを逆トレーニングすることで、現実世界の劣化設定に従う。
提案するネットワークは,画像の高精細化と凸最適化によるエネルギーベース目的関数の最小化により,残差学習を利用する。
論文 参考訳(メタデータ) (2020-05-03T00:12:38Z) - PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of
Generative Models [77.32079593577821]
PULSE (Photo Upsampling via Latent Space Exploration) は、それまで文献になかった解像度で高解像度でリアルな画像を生成する。
本手法は, 従来よりも高分解能, スケールファクターの知覚品質において, 最先端の手法よりも優れていた。
論文 参考訳(メタデータ) (2020-03-08T16:44:31Z) - Characteristic Regularisation for Super-Resolving Face Images [81.84939112201377]
既存の顔画像超解像法(SR)は、主に人工的にダウンサンプリングされた低解像度(LR)画像の改善に焦点を当てている。
従来の非教師なしドメイン適応(UDA)手法は、未ペアの真のLRとHRデータを用いてモデルをトレーニングすることでこの問題に対処する。
これにより、視覚的特徴を構成することと、画像の解像度を高めることの2つのタスクで、モデルをオーバーストレッチする。
従来のSRモデルとUDAモデルの利点を結合する手法を定式化する。
論文 参考訳(メタデータ) (2019-12-30T16:27:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。