Deep Learning on Image Denoising: An overview
- URL: http://arxiv.org/abs/1912.13171v4
- Date: Mon, 3 Aug 2020 06:55:36 GMT
- Title: Deep Learning on Image Denoising: An overview
- Authors: Chunwei Tian, Lunke Fei, Wenxian Zheng, Yong Xu, Wangmeng Zuo,
Chia-Wen Lin
- Abstract summary: We offer a comparative study of deep techniques in image denoising.
We first classify the deep convolutional neural networks (CNNs) for additive white noisy images.
Next, we compare the state-of-the-art methods on public denoising datasets in terms of quantitative and qualitative analysis.
- Score: 92.07378559622889
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning techniques have received much attention in the area of image
denoising. However, there are substantial differences in the various types of
deep learning methods dealing with image denoising. Specifically,
discriminative learning based on deep learning can ably address the issue of
Gaussian noise. Optimization models based on deep learning are effective in
estimating the real noise. However, there has thus far been little related
research to summarize the different deep learning techniques for image
denoising. In this paper, we offer a comparative study of deep techniques in
image denoising. We first classify the deep convolutional neural networks
(CNNs) for additive white noisy images; the deep CNNs for real noisy images;
the deep CNNs for blind denoising and the deep CNNs for hybrid noisy images,
which represents the combination of noisy, blurred and low-resolution images.
Then, we analyze the motivations and principles of the different types of deep
learning methods. Next, we compare the state-of-the-art methods on public
denoising datasets in terms of quantitative and qualitative analysis. Finally,
we point out some potential challenges and directions of future research.
Related papers
- Masked Image Training for Generalizable Deep Image Denoising [53.03126421917465]
We present a novel approach to enhance the generalization performance of denoising networks.
Our method involves masking random pixels of the input image and reconstructing the missing information during training.
Our approach exhibits better generalization ability than other deep learning models and is directly applicable to real-world scenarios.
arXiv Detail & Related papers (2023-03-23T09:33:44Z) - Enhancing convolutional neural network generalizability via low-rank weight approximation [6.763245393373041]
Sufficient denoising is often an important first step for image processing.
Deep neural networks (DNNs) have been widely used for image denoising.
We introduce a new self-supervised framework for image denoising based on the Tucker low-rank tensor approximation.
arXiv Detail & Related papers (2022-09-26T14:11:05Z) - NBD-GAP: Non-Blind Image Deblurring Without Clean Target Images [79.33220095067749]
Large amounts of blurry-clean image pairs are required for training to achieve good performance.
Deep networks often fail to perform well when the blurry images and the blur kernels during testing are very different from the ones used during training.
arXiv Detail & Related papers (2022-09-20T06:21:11Z) - Considering Image Information and Self-similarity: A Compositional
Denoising Network [0.0]
This paper proposes a compositional denoising network (CDN), whose image information path (IIP) and noise estimation path (NEP) will solve the two problems.
Experiments show that CDN achieves state-of-the-art results in synthetic and real-world image denoising.
arXiv Detail & Related papers (2022-09-14T05:05:08Z) - Robust Deep Ensemble Method for Real-world Image Denoising [62.099271330458066]
We propose a simple yet effective Bayesian deep ensemble (BDE) method for real-world image denoising.
Our BDE achieves +0.28dB PSNR gain over the state-of-the-art denoising method.
Our BDE can be extended to other image restoration tasks, and achieves +0.30dB, +0.18dB and +0.12dB PSNR gains on benchmark datasets.
arXiv Detail & Related papers (2022-06-08T06:19:30Z) - Deep Universal Blind Image Denoising [26.77629755630694]
Deep convolutional neural networks (CNNs) have shown great success in image denoising by incorporating large-scale synthetic datasets.
We present a CNN-based method that leverages the advantages of both methods based on the Bayesian perspective.
arXiv Detail & Related papers (2021-01-18T11:49:21Z) - Unpaired Learning of Deep Image Denoising [80.34135728841382]
This paper presents a two-stage scheme by incorporating self-supervised learning and knowledge distillation.
For self-supervised learning, we suggest a dilated blind-spot network (D-BSN) to learn denoising solely from real noisy images.
Experiments show that our unpaired learning method performs favorably on both synthetic noisy images and real-world noisy photographs.
arXiv Detail & Related papers (2020-08-31T16:22:40Z) - Variational Denoising Network: Toward Blind Noise Modeling and Removal [59.36166491196973]
Blind image denoising is an important yet very challenging problem in computer vision.
We propose a new variational inference method, which integrates both noise estimation and image denoising.
arXiv Detail & Related papers (2019-08-29T15:54:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.