NBD-GAP: Non-Blind Image Deblurring Without Clean Target Images
- URL: http://arxiv.org/abs/2209.09498v1
- Date: Tue, 20 Sep 2022 06:21:11 GMT
- Title: NBD-GAP: Non-Blind Image Deblurring Without Clean Target Images
- Authors: Nithin Gopalakrishnan Nair, Rajeev Yasarla and Vishal M. Patel
- Abstract summary: Large amounts of blurry-clean image pairs are required for training to achieve good performance.
Deep networks often fail to perform well when the blurry images and the blur kernels during testing are very different from the ones used during training.
- Score: 79.33220095067749
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, deep neural network-based restoration methods have achieved
state-of-the-art results in various image deblurring tasks. However, one major
drawback of deep learning-based deblurring networks is that large amounts of
blurry-clean image pairs are required for training to achieve good performance.
Moreover, deep networks often fail to perform well when the blurry images and
the blur kernels during testing are very different from the ones used during
training. This happens mainly because of the overfitting of the network
parameters on the training data. In this work, we present a method that
addresses these issues. We view the non-blind image deblurring problem as a
denoising problem. To do so, we perform Wiener filtering on a pair of blurry
images with the corresponding blur kernels. This results in a pair of images
with colored noise. Hence, the deblurring problem is translated into a
denoising problem. We then solve the denoising problem without using explicit
clean target images. Extensive experiments are conducted to show that our
method achieves results that are on par to the state-of-the-art non-blind
deblurring works.
Related papers
- How to Best Combine Demosaicing and Denoising? [16.921538543268216]
demosaicing and denoising play a critical role in the raw imaging pipeline.
Most demosaicing methods address the demosaicing of noise free images.
The real problem is to jointly denoise and demosaic noisy raw images.
arXiv Detail & Related papers (2024-08-13T07:23:53Z) - Masked Image Training for Generalizable Deep Image Denoising [53.03126421917465]
We present a novel approach to enhance the generalization performance of denoising networks.
Our method involves masking random pixels of the input image and reconstructing the missing information during training.
Our approach exhibits better generalization ability than other deep learning models and is directly applicable to real-world scenarios.
arXiv Detail & Related papers (2023-03-23T09:33:44Z) - Disentangling Noise from Images: A Flow-Based Image Denoising Neural
Network [25.008542061247383]
We propose a new perspective to treat image denoising as a distribution learning and disentangling task.
Since the noisy image distribution can be viewed as a joint distribution of clean images and noise, the denoised images can be obtained via manipulating the latent representations to the clean counterpart.
We present an invertible denoising network, FDN, without any assumptions on either clean or noise distributions.
arXiv Detail & Related papers (2021-05-11T01:52:26Z) - Neighbor2Neighbor: Self-Supervised Denoising from Single Noisy Images [98.82804259905478]
We present Neighbor2Neighbor to train an effective image denoising model with only noisy images.
In detail, input and target used to train a network are images sub-sampled from the same noisy image.
A denoising network is trained on sub-sampled training pairs generated in the first stage, with a proposed regularizer as additional loss for better performance.
arXiv Detail & Related papers (2021-01-08T02:03:25Z) - Unpaired Learning of Deep Image Denoising [80.34135728841382]
This paper presents a two-stage scheme by incorporating self-supervised learning and knowledge distillation.
For self-supervised learning, we suggest a dilated blind-spot network (D-BSN) to learn denoising solely from real noisy images.
Experiments show that our unpaired learning method performs favorably on both synthetic noisy images and real-world noisy photographs.
arXiv Detail & Related papers (2020-08-31T16:22:40Z) - Improving Blind Spot Denoising for Microscopy [73.94017852757413]
We present a novel way to improve the quality of self-supervised denoising.
We assume the clean image to be the result of a convolution with a point spread function (PSF) and explicitly include this operation at the end of our neural network.
arXiv Detail & Related papers (2020-08-19T13:06:24Z) - Handling noise in image deblurring via joint learning [0.3407858371718068]
Many blind deblurring methods assume blurred images are noise-free and perform unsatisfactorily on the blurry images with noise.
We propose a cascaded framework consisting of a denoiser subnetwork and a deblurring subnetwork.
Joint learning reduces the effect of the residual noise after denoising on deblurring, hence improves the robustness of deblurring to heavy noise.
arXiv Detail & Related papers (2020-01-27T12:59:52Z) - Deep Learning on Image Denoising: An overview [92.07378559622889]
We offer a comparative study of deep techniques in image denoising.
We first classify the deep convolutional neural networks (CNNs) for additive white noisy images.
Next, we compare the state-of-the-art methods on public denoising datasets in terms of quantitative and qualitative analysis.
arXiv Detail & Related papers (2019-12-31T05:03:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.