A Robust Comparison of the KDDCup99 and NSL-KDD IoT Network Intrusion
Detection Datasets Through Various Machine Learning Algorithms
- URL: http://arxiv.org/abs/1912.13204v1
- Date: Tue, 31 Dec 2019 07:36:33 GMT
- Title: A Robust Comparison of the KDDCup99 and NSL-KDD IoT Network Intrusion
Detection Datasets Through Various Machine Learning Algorithms
- Authors: Suchet Sapre, Pouyan Ahmadi and Khondkar Islam
- Abstract summary: Two of the most cited intrusion detection datasets are the KDDCup99 and the NSL-KDD.
The main goal of our project was to conduct a robust comparison of both datasets.
We were able to conclude that the NSL-KDD dataset is of a higher quality than the KDDCup99 dataset.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, as intrusion attacks on IoT networks have grown
exponentially, there is an immediate need for sophisticated intrusion detection
systems (IDSs). A vast majority of current IDSs are data-driven, which means
that one of the most important aspects of this area of research is the quality
of the data acquired from IoT network traffic. Two of the most cited intrusion
detection datasets are the KDDCup99 and the NSL-KDD. The main goal of our
project was to conduct a robust comparison of both datasets by evaluating the
performance of various Machine Learning (ML) classifiers trained on them with a
larger set of classification metrics than previous researchers. From our
research, we were able to conclude that the NSL-KDD dataset is of a higher
quality than the KDDCup99 dataset as the classifiers trained on it were on
average 20.18% less accurate. This is because the classifiers trained on the
KDDCup99 dataset exhibited a bias towards the redundancies within it, allowing
them to achieve higher accuracies.
Related papers
- Strengthening Network Intrusion Detection in IoT Environments with Self-Supervised Learning and Few Shot Learning [1.0678175996321808]
The Internet of Things (IoT) has been introduced as a breakthrough technology that integrates intelligence into everyday objects.
As the IoT networks grow and expand, they become more susceptible to cybersecurity attacks.
This paper introduces a novel intrusion detection approach designed to address these challenges.
arXiv Detail & Related papers (2024-06-04T06:30:22Z) - On the Cross-Dataset Generalization of Machine Learning for Network
Intrusion Detection [50.38534263407915]
Network Intrusion Detection Systems (NIDS) are a fundamental tool in cybersecurity.
Their ability to generalize across diverse networks is a critical factor in their effectiveness and a prerequisite for real-world applications.
In this study, we conduct a comprehensive analysis on the generalization of machine-learning-based NIDS through an extensive experimentation in a cross-dataset framework.
arXiv Detail & Related papers (2024-02-15T14:39:58Z) - Machine learning-based network intrusion detection for big and
imbalanced data using oversampling, stacking feature embedding and feature
extraction [6.374540518226326]
Intrusion Detection Systems (IDS) play a critical role in protecting interconnected networks by detecting malicious actors and activities.
This paper introduces a novel ML-based network intrusion detection model that uses Random Oversampling (RO) to address data imbalance and Stacking Feature Embedding (PCA) for dimension reduction.
Using the CIC-IDS 2017 dataset, DT, RF, and ET models reach 99.99% accuracy, while DT and RF models obtain 99.94% accuracy on CIC-IDS 2018 dataset.
arXiv Detail & Related papers (2024-01-22T05:49:41Z) - Effective Intrusion Detection in Highly Imbalanced IoT Networks with
Lightweight S2CGAN-IDS [48.353590166168686]
Internet of Things (IoT) networks contain benign traffic far more than abnormal traffic, with some rare attacks.
Most existing studies have been focused on sacrificing the detection rate of the majority class in order to improve the detection rate of the minority class.
We propose a lightweight framework named S2CGAN-IDS to expand the number of minority categories in both data space and feature space.
arXiv Detail & Related papers (2023-06-06T14:19:23Z) - DOC-NAD: A Hybrid Deep One-class Classifier for Network Anomaly
Detection [0.0]
Machine Learning approaches have been used to enhance the detection capabilities of Network Intrusion Detection Systems (NIDSs)
Recent work has achieved near-perfect performance by following binary- and multi-class network anomaly detection tasks.
This paper proposes a Deep One-Class (DOC) classifier for network intrusion detection by only training on benign network data samples.
arXiv Detail & Related papers (2022-12-15T00:08:05Z) - A Dependable Hybrid Machine Learning Model for Network Intrusion
Detection [1.222622290392729]
We propose a new hybrid model that combines machine learning and deep learning to increase detection rates while securing dependability.
Our method produces excellent results when tested on two datasets, KDDCUP'99 and CIC-MalMem-2022.
arXiv Detail & Related papers (2022-12-08T20:19:27Z) - Does Decentralized Learning with Non-IID Unlabeled Data Benefit from
Self Supervision? [51.00034621304361]
We study decentralized learning with unlabeled data through the lens of self-supervised learning (SSL)
We study the effectiveness of contrastive learning algorithms under decentralized learning settings.
arXiv Detail & Related papers (2022-10-20T01:32:41Z) - CvS: Classification via Segmentation For Small Datasets [52.821178654631254]
This paper presents CvS, a cost-effective classifier for small datasets that derives the classification labels from predicting the segmentation maps.
We evaluate the effectiveness of our framework on diverse problems showing that CvS is able to achieve much higher classification results compared to previous methods when given only a handful of examples.
arXiv Detail & Related papers (2021-10-29T18:41:15Z) - Feature Extraction for Machine Learning-based Intrusion Detection in IoT
Networks [6.6147550436077776]
This paper aims to discover whether Feature Reduction (FR) and Machine Learning (ML) techniques can be generalised across various datasets.
The detection accuracy of three Feature Extraction (FE) algorithms; Principal Component Analysis (PCA), Auto-encoder (AE), and Linear Discriminant Analysis (LDA) is evaluated.
arXiv Detail & Related papers (2021-08-28T23:52:18Z) - Towards Reducing Labeling Cost in Deep Object Detection [61.010693873330446]
We propose a unified framework for active learning, that considers both the uncertainty and the robustness of the detector.
Our method is able to pseudo-label the very confident predictions, suppressing a potential distribution drift.
arXiv Detail & Related papers (2021-06-22T16:53:09Z) - Stance Detection Benchmark: How Robust Is Your Stance Detection? [65.91772010586605]
Stance Detection (StD) aims to detect an author's stance towards a certain topic or claim.
We introduce a StD benchmark that learns from ten StD datasets of various domains in a multi-dataset learning setting.
Within this benchmark setup, we are able to present new state-of-the-art results on five of the datasets.
arXiv Detail & Related papers (2020-01-06T13:37:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.